python發送tcp包
1. python3 & TCP協議和UDP協議的特點和區別
優點:
(1)TCP是面向連接的運輸層協議;
(2)每一條TCP連接只能有兩個端點(即兩個套接字),只能是點對點的;
(3)TCP提供可靠的傳輸服務。傳送的數據無差錯、不丟失、不重復、按序到達;
(4)TCP提供全雙工通信。允許通信雙方的應用進程在任何時候都可以發送數據,因為兩端都設有發送緩存和接受緩存;
(5)面向位元組流。雖然應用程序與TCP交互是一次一個大小不等的數據塊,但TCP把這些數據看成一連串無結構的位元組流,它不保證接收方收到的數據塊和發送方發送的數據塊具有對應大小關系,例如,發送方應用程序交給發送方的TCP10個數據塊,但就受訪的TCP可能只用了4個數據塊久保收到的位元組流交付給上層的應用程序,但位元組流完全一樣。
缺點:
慢,效率低,佔用系統資源高,易被攻擊 TCP在傳遞數據之前,要先建連接,這會消耗時間,在數據傳遞時,確認機制、重傳機制、擁塞控制機制等都會消耗大量的時間,而且要在每台設備上維護所有的傳輸連接。事實上,每個連接都會佔用系統的CPU、內存等硬體資源。因為TCP有確認機制、三次握手機制,這些也導致TCP容易被人利用,實現DOS、DDOS、CC等攻擊。
TCP的應用場景:
當對網路通訊質量有要求的時候。例如:整個數據要准確無誤的傳遞給對方,這往往用於一些要求可靠的應用。如:用於文件傳輸(ftp HTTP 對數據准確性要求高,速度可以相對慢),發送或接收郵件(POP IMAP SMTP 對數據准確性要求高,非緊急應用),遠程登錄(TELNET SSH 對數據准確性有一定要求,有連接的概念)等等。
優點:
(1)UDP是無連接的傳輸層協議;
(2)UDP使用盡最大努力交付,不保證可靠交付;
(3)UDP是面向報文的,對應用層交下來的報文,不合並,不拆分,保留原報文的邊界;
(4)UDP沒有擁塞控制,因此即使網路出現擁塞也不會降低發送速率;
(5)UDP支持一對一一對多多對多的交互通信;
(6)UDP的首部開銷小,只有8位元組.
缺點:
不可靠,不穩定。 因為UDP沒有TCP那些可靠的機制,在數據傳遞時,如果網路質量不好,就會很容易丟包。
UDP的應用場景:
當對網路通訊質量要求不高的時候,要求網路通訊速度能盡量的快,這時就可以使用UDP。 UDP一般用於即時通信(QQ聊天 對數據准確性和丟包要求比較低,但速度必須快),在線視頻(RTSP 速度一定要快,保證視頻連續,但是偶爾花了一個圖像幀,人們還是能接受的),網路語音電話(VoIP 語音數據包一般比較小,需要高速發送,偶爾斷音或串音也沒有問題)等等。
(1)TCP面向連接(如打電話要先撥號建立連接);UDP是無連接的,即發送數據之前不需要建立連接
(2)TCP提供可靠的服務。也就是說,通過TCP連接傳送的數據,無差錯,不丟失,不重復,且按序到達;UDP盡最大努力交付,即不保證可靠交付
(3)TCP面向位元組流,實際上是TCP把數據看成一連串無結構的位元組流;UDP是面向報文的UDP沒有擁塞控制,因此網路出現擁塞不會使源主機的發送速率降低(對實時應用很有用,如IP電話,實時視頻會議等)
(4)每一條TCP連接只能是點到點的;UDP支持一對一,一對多,多對一和多對多的交互通信
(5)TCP首部開銷20位元組;UDP的首部開銷小,只有8個位元組
(6)TCP的邏輯通信信道是全雙工的可靠信道,UDP則是不可靠信道
HTTP、HTTPS、FTP、TELNET、SMTP(簡單郵件傳輸協議)協議基於可靠的TCP協議。TFTP、DNS、DHCP、TFTP、SNMP(簡單網路管理協議)、RIP基於不可靠的UDP協議
2. 用python怎麼發送tcp協議的16進制數據包
一般字元串可以直接發,不是可讀的也可以用"\x33\x22"這種發。
如果是一列數之類的,可以用struct的pack打包成字元串發送。
3. 用python怎麼實現tcp發送16進制包
你好:
看了你們的州衫對話,表示無法冊猛腔忍受了;
這是在問問題知鍵呢;
還是其他。
4. Python網路編程9-實現TCP三次握手與四次揮手
見TCP流量分析祥爛塌篇
TCP 流量分析 - (jianshu.com)
使用一台windows主機作為TCP Server,使用一台linux作為TCP Client,發起TCP連接,發送數據,結束連接。
以下Python腳本通過Socket實現TCP Server端,謹圓接收TCP連接。
以下Python腳本通過歷亂Scapy實現TCP Client端,向Server端發起TCP連接。
首先在Windows主機上運行TCP Server腳本。
在linux主機上運行TCP Client腳本後,會將TCP交互過程列印出來。
通過科來的csna抓包,並追蹤TCP流,如下為交互的數據包
5. Python網路編程 -- TCP/IP
首先放出一個 TCP/IP 的程序,這里是單線程伺服器與客戶端,在多線程一節會放上多線程的TCP/IP服務程序沖戚拍。
這里將服務端和客戶端放到同一個程序當中,方便對比服務端與客戶端的不同。
TCP/IP是網際網路的通信協議,其參考OSI模型,也採用了分層的方式,對每一層制定了相應的標准。
網際協議(IP)是為全世界通過互聯網連接的計算機賦予統一地址系統的機制,它使得數據包能夠從互聯網的一端發送至另一端,如 130.207.244.244,為了便於記憶,常用主機名代替IP地址,例如 .com。
UDP (User Datagram Protocol,用戶數據報協議) 解決了上述第一個問題,通過埠號來實現了多路復用(用不同的埠區分不同的應用程序)但是使用UDP協議的網路程序需要自己處理丟包、重包和包的亂序問題。
TCP (Transmission Control Protocol,傳輸控制協議) 解決了上述兩個問題,同樣使用埠號實現了復用。
TCP 實現可靠連接的方法:
socket通信模型及 TCP 通信過程如下兩張圖。
[圖片上傳失敗...(image-6d947d-1610703914730)]
[圖片上傳失敗...(image-30b472-1610703914730)]
socket.getaddrinfo(host, port, family, socktype, proto, flags)
返回: [(family, socktype, proto, cannonname, sockaddr), ] 由元組組成的列表散羨。
family:表示socket使用的協議簇, AF_UNIX : 1, AF_INET: 2, AF_INET6 : 10。 0 表示不指定。
socktype: socket 的類型, SOCK_STREAM : 1, SOCK_DGRAM : 2, SOCK_RAW : 3
proto: 協議, 套接字所用的協議,如果不指定, 則為 0。 IPPROTO_TCP : 6, IPPRTOTO_UDP : 17
flags:標記,限制返回內容。 AI_ADDRCONFIG 把計算機無法連接的所有地址都過濾掉(如果一個機構既有IPv4,又有IPv6,而主機只有IPv4,則會把 IPv6過濾掉)
AI _V4MAPPED, 如果本機只有IPv6,服務卻只有IPv4,這個標記會將 IPv4地址重新編碼為可實際使用的IPv6地址。
AI_CANONNAME,返回規范主機名:cannonname。
getaddrinfo(None, 'smtp', 0, socket.SOCK_STREAM, 0, socket.AP_PASSIVE)
getaddrinfo('ftp.kernel.org', 'ftp', 0, 'socket.SOCK_STREAM, 0, socket.AI_ADDRCONFIG | socket.AI_V4MAPPED)
利用已經通信的套接字名提供給getaddrinfo
mysock = server_sock.accept()
addr, port = mysock.getpeername()
getaddrinfo(addr, port, mysock.family, mysock.type, mysock.proto, socket.AI_CANONNAME)
TCP 數據發送模式:
由於 TCP 是發送流式數據,並且會自動分割發送的數據包,而仔槐且在 recv 的時候會阻塞進程,直到接收到數據為止,因此會出現死鎖現象,及通信雙方都在等待接收數據導致無法響應,或者都在發送數據導致緩存區溢出。所以就有了封幀(framing)的問題,即如何分割消息,使得接收方能夠識別消息的開始與結束。
關於封幀,需要考慮的問題是, 接收方何時最終停止調用recv才是安全的?整個消息或數據何時才能完整無缺的傳達?何時才能將接收到的消息作為一個整體來解析或處理。
適用UDP的場景:
由於TCP每次連接與斷開都需要有三次握手,若有大量連接,則會產生大量的開銷,在客戶端與伺服器之間不存在長時間連接的情況下,適用UDP更為合適,尤其是客戶端太多的時候。
第二種情況: 當丟包現象發生時,如果應用程序有比簡單地重傳數據聰明得多的方法的話,那麼就不適用TCP了。例如,如果正在進行音頻通話,如果有1s的數據由於丟包而丟失了,那麼只是簡單地不斷重新發送這1s的數據直至其成功傳達是無濟於事的。反之,客戶端應該從傳達的數據包中任意選擇一些組合成一段音頻(為了解決這一問題,一個智能的音頻協議會用前一段音頻的高度壓縮版本作為數據包的開始部分,同樣將其後繼音頻壓縮,作為數據包的結束部分),然後繼續進行後續操作,就好像沒有發生丟包一樣。如果使用TCP,那麼這是不可能的,因為TCP會固執地重傳丟失的信息,即使這些信息早已過時無用也不例外。UDP數據報通常是互聯網實時多媒體流的基礎。
參考資料:
6. Python 之 Socket編程(TCP/UDP)
socket(family,type[,protocal]) 使用給定的地址族、套接字類型、協議編號(默認為0)來創建套接字。
有效的埠號: 0~ 65535
但是小於1024的埠號基本上都預留給了操作系統
POSIX兼容系統(如Linux、Mac OS X等),在/etc/services文件中找到這些預留埠與的列表
面向連接的通信提供序列化、可靠的和不重復的數據交付,而沒有記錄邊界。意味著每條消息都可以拆分多個片段,並且每個消息片段都能到達目的地,然後將它們按順序組合在一起,最後將完整的信息傳遞給等待的應用程序。
實現方式(TCP):
傳輸控制協議(TCP), 創建TCP必須使用SOCK_STREAM作為套接字類型
因為這些套接字(AF_INET)的網路版本使用網際網路協議(IP)來搜尋網路中的IP,
所以整個系統通常結合這兩種協議(TCP/IP)來進行網路間數據通信。
數據報類型的套接字, 即在通信開始之前並不需要建議連接,當然也無法保證它的順序性、可靠性或重復性
實現方式(UDP)
用戶數據包協議(UDP), 創建UDP必須使用SOCK_DGRAM (datagram)作為套接字類型
它也使用網際網路來尋找網路中主機,所以是UDP和IP的組合名字UDP/IP
注意點:
1)TCP發送數據時,已建立好TCP連接,所以不需要指定地址。UDP是面向無連接的,每次發送要指定是發給誰。
2)服務端與客戶端不能直接發送列表,元組,字典。需要字元串化repr(data)。
TCP的優點: 可靠,穩定 TCP的可靠體現在TCP在傳遞數據之前,會有三次握手來建立連接,而且在數據傳遞時,有確認、窗口、重傳、擁塞控制機制,在數據傳完後,還會斷開連接用來節約系統資源。
TCP的缺點: 慢,效率低,佔用系統資源高,易被攻擊 TCP在傳遞數據之前,要先建連接,這會消耗時間,而且在數據傳遞時,確認機制、重傳機制、擁塞控制機制等都會消耗大量的時間,而且要在每台設備上維護所有的傳輸連接,事實上,每個連接都會佔用系統的CPU、內存等硬體資源。 而且,因為TCP有確認機制、三次握手機制,這些也導致TCP容易被人利用,實現DOS、DDOS、CC等攻擊。
什麼時候應該使用TCP : 當對網路通訊質量有要求的時候,比如:整個數據要准確無誤的傳遞給對方,這往往用於一些要求可靠的應用,比如HTTP、HTTPS、FTP等傳輸文件的協議,POP、SMTP等郵件傳輸的協議。 在日常生活中,常見使用TCP協議的應用如下: 瀏覽器,用的HTTP FlashFXP,用的FTP Outlook,用的POP、SMTP Putty,用的Telnet、SSH QQ文件傳輸.
UDP的優點: 快,比TCP稍安全 UDP沒有TCP的握手、確認、窗口、重傳、擁塞控制等機制,UDP是一個無狀態的傳輸協議,所以它在傳遞數據時非常快。沒有TCP的這些機制,UDP較TCP被攻擊者利用的漏洞就要少一些。但UDP也是無法避免攻擊的,比如:UDP Flood攻擊……
UDP的缺點: 不可靠,不穩定 因為UDP沒有TCP那些可靠的機制,在數據傳遞時,如果網路質量不好,就會很容易丟包。
什麼時候應該使用UDP: 當對網路通訊質量要求不高的時候,要求網路通訊速度能盡量的快,這時就可以使用UDP。 比如,日常生活中,常見使用UDP協議的應用如下: QQ語音 QQ視頻 TFTP ……
7. python 中tcp伺服器能給客戶端發送(send())一個空值嗎,能的話,代碼怎麼寫
不能,tcp的data包不可以空
8. Python TCP連接 伺服器(Server)如何指定埠發送信息
一般來說伺服器的埠需要是固定的,否則無法發起連接。客戶端的埠可以是隨機的。
9. 怎麼用python和原始套接字發送一tcp數據包
TCP的首部格式:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port | Destination Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Acknowledgment Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data | |U|A|P|R|S|F| |
| Offset| Reserved |R|C|S|S|Y|I| Window |
| | |G|K|H|T|N|N| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Checksum | Urgent Pointer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| data |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
—Source Port是源埠,16位。
—Destination Port是目的埠,16位。
—Sequence Number是發送數據包中的第一個位元組的序列號,32位。
—Acknowledgment Number是確認序列號,32位。
—Data Offset是數據偏移,4位,該欄位的值是TCP首部(包括選項)長度乘以4。
—標志位: 6位,URG表示Urgent Pointer欄位有意義:
ACK表示Acknowledgment Number欄位有意義
PSH表示Push功能,RST表示復位TCP連接
SYN表示SYN報文(在建立TCP連接的時候使用)
FIN表示沒有數據需要發送了(在關閉TCP連接的時候使用)
Window表示接收緩沖區的空閑空間,16位,用來告訴TCP連接對端自己能夠接收的最大數據長度。
—Checksum是校驗和,16位。
—Urgent Pointers是緊急指針,16位,只有URG標志位被設置時該欄位才有意義,表示緊急數據相對序列號(Sequence Number欄位的值)的偏移。
更多TCP協議的詳細信息可以在網上輕易找到,在這里不再贅述。
為了建立一個可以自己構造數據的包,我們使用"SOCK_RAW"這種socket格式,使用"IPPROTO_RAW"協議,它會告訴系統我們將提供網路層和傳輸層。
s = socket.socket(socket.AF_INET,socket.SOCK_RAW,)
通過這個簡單的類,我們可以進行IP頭部信息構造
class ip(object):
def __init__(self, source, destination):
self.version = 4
10. Python TCP通訊發送Byte出現數據裡面多出一上字元是怎麼回事
txt="\x27\x88",這個是由兩個轉義字元構成的字元串。
txt.encode()會使用utf-8編碼方式將字元串編碼為位元組序列(bytes對象)。
utf-8編碼的話,txt.encode()會返回3位元組的位元組序列:b'\x27\xc2\x88',因為對於字元'\x88',用utf-8編碼後是2個位元組b'\xc2\x88'。
所以,接收到的自然是3個位元組的位元組序列b'\x27\xc2\x88'。
要解碼後才是原字元串,即:
b'\x27\xc2\x88'.decode()=='\x27\x88'的結果是True。