python自動化報表
統計網站訪問量(訪問人次),即PV,需要下載相應的插件。
第1步,將插件文件復制到網站目錄(插件下載地址密碼:k4x2)
第2步,在模板中相應位置加入以下代碼
② Python操作Excel實現自動化報表
Python操作Excel實現自動化報表
安裝
python -m pip install xlrd xlwt xlutils。
基本用法
1.從指定文件路徑讀取excel表格,進行一定操作,然後保存到另一個excel文件:result.xlsx
import xlwt
import xlrd
from xlutils. import
import pandas as pd
from pandas import DataFrame,Series
import os
os.chdir('./')
# 從指定文件路徑讀取excel表格
df = pd.read_excel('D:/mypaper/data/data.xlsx')
# 查看df內容
# 根據age算出出生年份,增加一列
import datetime
import os
year = datetime.datetime.now().year#獲取當前系統時間對應的年份
df['birth'] = year-df['age']
df.to_excel('result.xlsx')#保存到當前工作目錄,可以用os.getcwd()查看
#查看下此時df的內容,可以看到已經生成了birth這一列。
2.單元格操作
# 定義方法:讀取指定目錄下Excel文件某個sheet單元格的值
def excel_read(file_path,table,x,y):
data = xlrd.open_workbook(file_path)
table = data.sheet_by_name(table)
return table.cell(y,x).value
# 定義方法:單元格值及樣式
write_obj_list = []
def concat_obj(cols,rows,value):
write_obj_list.append({'cols':cols,'rows':rows,'value':value,
'style':xlwt.easyxf('font: name 宋體,height 280;alignment: horiz centre')})
# 定義方法:合並單元格
def merge_unit(srows,erows,scols,ecols,value):
write_obj_list.append({'id':'merge','srows':srows,'erows':erows,'scols':scols,
'ecols':ecols,'value':value,'style':xlwt.easyxf('font: name 宋體,height 280;alignment: horiz centre')})
# 定義方法:更新excel
excel_update(file_path,write_obj_list,new_path):
old_excel = xlrd.open_workbook(file_path, formatting_info=True)
#管道作用
new_excel = (old_excel)
'''
通過get_sheet()獲取的sheet有write()方法
'''
sheet1 = new_excel.get_sheet(0)
'''
1代表是修改第幾個工作表裡,從0開始算是第一個。此處修改第一個工作表
'''
for item in write_obj_list:
if 'id' not in item.keys():
if 'style' in item.keys():
sheet1.write(item['rows'], item['cols'], item['value'],item['style'])
else:
sheet1.write(item['rows'], item['cols'], item['value'])
else:
if 'style' in item.keys():
sheet1.write_merge(item['srows'],item['erows'],item['scols'], item['ecols'], item['value'],item['style'])
else:
sheet1.write_merge(item['srows'],item['erows'],item['scols'], item['ecols'], item['value'])
'''
如果報錯 dict_items has no attributes sort
把syle源碼中--alist.sort() 修改為----> sorted(alist)
一共修改2次
'''
new_excel.save(file_path)
#參數詳解
# srows:合並的起始行數
# erows:合並的結束行數
# scols:合並的起始列數
# ecols:合並的結束列數
# value:合並單元格後的填充值
# style:合並後填充風格:
# font: name 宋體
# height 280;
# alignment: horiz centre
# ... 與excel操作基本保持一致
(注意:該方法僅僅是將需要直行的動作保存到一個list中,真正的動作還未執行,執行動作是發生在excel_update方法中)
最終調用excel_update方法,傳入每個單元格需要進行的操作和填充值的write_obj_list以及文件保存路徑file_path,就可以在當前工作目錄下生成想要的Excel結果文件。
注意:
1.write_obj_list支持用戶自定義
2.write_obj_list也可以是根據excel_read方法讀取現有待修改的excel文件(可以維持原有表格的格式)而生成
End
③ python辦公自動化之二:openpyxl寫入表格數據
1.改變表單名稱
2.新建表單
3.刪除表單
1.寫入指定單元格
2.整行寫入
3.根據列表遍歷寫入
4.在指定范圍的單元格寫入它的坐標
注意:為避免出錯,通常不建議直接改寫原文件
④ 分析excel和python在處理數據時各自的優劣點
兩者都是數據分析處理工具,excel上手簡單,操作界面人性化,小批量數據處理神器;
python需要點編程基礎,安裝步驟、導入庫、編譯器、語法讓很多人不懂了,但它在擴展性強,存在大量外部擴展庫,什麼批量合並excel工作簿、批量發送郵件、自動化生成報表之類,雖然這些excel都可以,但涉及到VB語言,遠不及python語法簡單;但是如果一份幾百條數據,需要統計一個結果,excel插入透視表,分類匯總兩步搞定,你非要用python,先是導入pandas/numpy,又是xlrd,接著又是groupby,一頓操作猛如虎,看著十分高大上,人家excel2秒鍾早已搞定;
數據處理:兩者都很熟練的情況下,不考慮數據數量,基本平分秋色,excel成熟體系的快捷鍵、功能;python豐富的各類外部庫;
數據分析:這個的話excel雖然有規劃求解、方差分析、T檢驗之類的工具,但是你要搞個k-mean聚類、決策樹之類的,excel是不行的,還有就是處理數據級與運行效率的問題,excel單表100W,能處理得差不多就二三十萬,多了就卡死了,python就不存在這個問題。
總而言之,公司日常報表,財務類、考勤類、部門小組業績類,這些基本excel就可以搞定,但你要搞大數據分析,隨隨便便幾百萬條數據,excel表示心有餘而力不足。
⑤ 使用Python做數據分析的優點是什麼
最近幾年,大數據的發展程度越來越明顯,很多企業由於使用了大數據分析使得企業朝著更好的方向發展,這就導致的數據分析行業的人才開始稀缺起來,對於數據分析這個工作中,是需要學會一些編程語言的,比如MATLAB,Python,Java等語言。對於初學者來說,Python是一個不錯的語言,Python語言簡單易懂,同時對於大數據分析有很明顯的幫助。那麼使用Python做數據分析的優點是什麼呢?一般來說就是簡單易學、語言通用、存在科學計算活躍區域等等。
首先說說Python的第一個優點,那就是簡單易學。很多學過Java的朋友都知道,Python語法簡單的多,代碼十分容易被讀寫,最適合剛剛入門的朋友去學習。我們在處理數據的時候,一般都希望數據能夠轉化成可運算的數字形式,這樣,不管是沒學過編程的人還是學過編程的人都能夠看懂這個數據。
Python在數據分析和交互、探索性計算以及數據可視化等方面都顯得比較活躍,這就是Python作為數據分析的原因之一,python擁有numpy、matplotlib、scikit-learn、pandas、ipython等工具在科學計算方面十分有優勢,尤其是pandas,在處理中型數據方面可以說有著無與倫比的優勢,已經成為數據分析中流砥柱的分析工具。
Python也具有強大的編程能力,這種編程語言不同於R或者matlab,python有些非常強大的數據分析能力,並且還可以利用Python進行爬蟲,寫游戲,以及自動化運維,在這些領域中有著很廣泛的應用,這些優點就使得一種技術去解決所有的業務服務問題,這就充分的體現的Python有利於各個業務之間的融合。如果使用Python,能夠大大的提高數據分析的效率。
python是人工智慧時代的通用語言
Python對於如今火熱的人工智慧也有一定的幫助,這是因為人工智慧需要的是即時性,而Python是一種非常簡潔的語言,同時有著豐富的資料庫以及活躍的社區,這樣就能夠輕松的提取數據,從而為人工智慧做出優質的服務。
通過上面的描述,想必大家已經知道了使用Python做數據分析的優點是什麼了吧,Python語言得益於它的簡單方便使得在大數據、數據分析以及人工智慧方面都有十分明顯的存在感,對於數據分析從業者以及想要進入數據分析從業者的人來說,簡單易學容易上手的優勢也是一個優勢,所以,要做好數據分析,一定要學會Python語言。
⑥ python如何使用帆軟報表
方法是從FineReport報表軟體中進入:
打開設計器,選擇「伺服器」,點擊「報表平台管理」,即可進入。用戶首次進入報表平台,系統會要求填寫管理員的賬戶和密碼,設定好後,點擊「進入數據決策系統」即可。
⑦ Python智能辦公是學些什麼
您好!關於您提的「Python智能辦公是學些什麼?」這個問題,我的回答是:
Python由荷蘭數學和計算機科學研究學會的Guido van Rossum於1990 年代初設計,作為一門叫做ABC語言的替代品。 Python提供了高效的高級數據結構,還能簡單有效地面向對象編程。Python語法和動態類型,以及解釋型語言的本質,使它成為多數平台上寫腳本和快速開發應用的編程語言, 隨著版本的不斷更新和語言新功能的添加,逐漸被用於獨立的、大型項目的開發。
Python解釋器易於擴展,可以使用C或C++(或者其他可以通過C調用的語言)擴展新的功能和數據類型。 Python 也可用於可定製化軟體中的擴展程序語言。Python豐富的標准庫,提供了適用於各個主要系統平台的源碼或機器碼。
2021年10月,語言流行指數的編譯器Tiobe將Python加冕為最受歡迎的編程語言,20年來首次將其置於Java、C和JavaScript之上。
一、Python基礎,主要學習內容包括:計算機組成原理、Python開發環境、Python變數、流程式控制制語句(選擇、循環)、數據容器(列表、元組、字典、集合)、函數及其應用、文件操作、模塊與包、異常處理、面向對象、飛機大戰游戲設計與PyEcharts數據可視化。
二、Python高級,主要學習內容包括:並發編程(多任務編程)、網路編程(了解網路通信協議、HTTP、HTTPS)、資料庫編程(MySQL基礎、高級、多表查詢、事務處理、索引優化、主從復制、Kettle ETL工具、數據可視化展示FineBI或Tableau)、Linux操作系統(操作系統概述、常用Linux命令、網路配置、軟體安裝與卸載等)、Python高級及正則表達式、mini-web框架之FastAPI。
三、Python爬蟲,主要學習內容包括:爬蟲基礎知識(爬蟲的概念和作用、爬蟲的流程、http與https協議、瀏覽器開發者工具的使用)、requests模塊(使用requests爬取網路貼吧)、數據爬取(正則模塊re、jsonpath、bs4、xpath、lxml)、selenium(selenium自動化測試工具在爬蟲中的應用、反爬與反反爬(主要講解的是在爬蟲的中遇到的反爬和如何進行反反爬)、scrapy 框架、八爪魚數據採集工具的使用等等。
四、Pandas數據分析,主要學習內容包括:Python數據分析介紹及環境搭建、Pandas的DataFrame、Pandas數據結構、Pandas數據分析入門、Pandas數據清洗、Pandas數據處理、Pandas數據可視化。
五、Python辦公自動化,主要學習內容包括:使用Python操作Excel、配合MySQL資料庫自動生成報表、使用Python快速生成Word文檔、PDF也能實現快速自動化、PPT自動化處理、Python實現數據圖表與可視化、Python郵件自動化處理、Web自動化操作。
希望我的回答可以幫到您!