當前位置:首頁 » 編程語言 » python開源監控

python開源監控

發布時間: 2023-03-01 02:05:36

1. python 監控一個文件夾

笨辦法是在循環中不斷讀取目錄以及目錄中文件的最後修改時間,如果有變更,則說說文件被修改。

這種辦法需要不斷的循環讀取文件信息,這對cpu佔用較高,同時也會產生一定的磁碟IO,短時間小范圍使用尚可,如果長時間運行在伺服器上,或者監控一個包含很多文件的目錄則不可取。
辦法之二是利用操作系統提供的功能來實現。
比如在Windows中,可以利用Windows API【ReadDirectoryChangesW】來實現。這可以免去大量的磁碟IO。因為文件修改的頻率一般不高,可以使用定計時器進行循環,對cup的佔用也會少很多。

2. Python五大應用領域是什麼

一、網路爬蟲


網路爬蟲是Python比較常用的一個場景,國際上,google在前期大量地運用Python言語作為網路爬蟲的根底,帶動了整個Python言語的運用發展。


二、數據處理


Python有很齊備的生態環境。"大數據"分析中涉及到的分布式核算、數據可視化、資料庫操作等,Python中都有成熟的模塊能夠挑選完結其功能。關於Hadoop-MapRece和Spark,都能夠直接運用Python完結核算邏輯,這不管關於數據科學家仍是關於數據工程師而言都是十分便當的。


三、web開發


Python的誕生前史比Web還要早,由於Python是一種解說型的腳本言語,開發效率高,所以十分適合用來做Web開發。


Django 是 Python 編程言語驅動的一個開源模型-視圖-控制器(MVC)風格的 Web 運用程序結構。運用 Django,咱們在幾分鍾之內就能夠創建高品質、易維護、資料庫驅動的運用程序。


四、數據分析


關於數據分析師來說,不只要自己理解數據背面的含義,而且還要給更直地展現數據的含義。


Scipy是一組專門解決科學核算中各種規范問題域的包的集合。Numpy是python科學核算的根底包。Pandas處理上千萬的數據是一揮而就的工作,同時隨後咱們也將看到它比sql有更強的表達能力,能夠做很多復雜的操作,要寫的code也更少。


五、人工智慧


人工智慧是現在十分火的一個方向,AI熱潮讓Python言語的未來充滿了無限的潛力。現在釋放出來的幾個十分有影響力的AI結構,大多是Python的實現,為什麼呢?


在人工智慧大領域領域內的數據發掘、機器學習、神經網路、深度學習等方面都是主流的編程言語,得到廣泛的支持和運用。人工智慧的核心演算法大部分仍是依賴於C/C++的,由於是核算密集型,需求十分精細的優化,還需求GPU、專用硬體之類的介面,這些都只要C/C++能做到。


關於Python五大應用領域是什麼,環球青藤小編就和大家分享到這里了,學習是永無止境的,學習一項技能更是受益終身,所以,只要肯努力學,什麼時候開始都不晚。如果您還想繼續了解關於python編程的學習方法及素材等內容,可以點擊本站其他文章學習。

3. 去哪裡找python的開源項目

GitHub是一個面向開源及私有軟體項目的託管平台,因為只支持git 作為唯一的版本庫格式進行託管,故名GitHub。作為開源代碼庫以及版本控制系統,Github擁有超過900萬開發者用戶。隨著越來越多的應用程序轉移到了雲上,Github已經成為了管理軟體開發以及發現已有代碼的首選方法。在GitHub,用戶可以十分輕易地找到海量的開源代碼。

下面給大家介紹一些GitHub上25個開源項目:

(1)TensorFlow Models

如果你對機器學習和深度學習感興趣,一定聽說過TensorFlow。TensorFlow Models是一個開源存儲庫,可以找到許多與深度學習相關的庫和模型。

(GitHub: https://github.com/tensorflow/models )

(2)Keras

Keras是一個高級神經網路API,用Python編寫,能夠在TensorFlow,CNTK或Theano之上運行。旨在完成深度學習的快速開發(GitHub: https://github.com/keras-team/keras )

(3)Flask

Flask 是一個微型的 Python 開發的 Web 框架,基於Werkzeug WSGI工具箱和Jinja2 模板引擎,使用BSD授權。

(GitHub: https://github.com/pallets/flask )

(4)scikit-learn

scikit-learn是一個用於機器學習的Python模塊,基於 NumPy、SciPy 和 matplotlib 構建。,並遵循 BSD 許可協議。

(GitHub: https://github.com/scikit-learn )

(5)Zulip

Zulip是一款功能強大的開源群聊應用程序,它結合了實時聊天的即時性和線程對話的生產力優勢。Zulip作為一個開源項目,被許多世界500強企業,大型組織以及其他需要實時聊天系統的用戶選擇使用,該系統允許用戶每天輕松處理數百或數千條消息。Zulip擁有超過300名貢獻者,每月合並超過500次提交,也是規模最大,發展最快的開源群聊項目。

(GitHub: https://github.com/zulip/zulip )

相關推薦:《Python入門教程》

(6)Django

Django 是 Python 編程語言驅動的一個開源模型-視圖-控制器(MVC)風格的 Web 應用程序框架,旨在快速開發出清晰,實用的設計。使用 Django,我們在幾分鍾之內就可以創建高品質、易維護、資料庫驅動的應用程序。

(GitHub: https://github.com/django/django )

(7)Rebound

Rebound 是一個當你得到編譯錯誤時即時獲取 Stack Overflow 結果的命令行工具。 就用 rebound 命令執行你的文件。這對程序員來說方便了不少。

(GitHub: https://github.com/shobrook/rebound )

(8)Google Images Download

這是一個命令行python程序,用於搜索Google Images上的關鍵字/關鍵短語,並可選擇將圖像下載到您的計算機。你也可以從另一個python文件調用此腳本。

(GitHub: https://github.com/hardikvasa/google-images-download )

(9)YouTube-dl

youtube-dl 是基於 Python 的命令行媒體文件下載工具,完全開源免費跨平台。用戶只需使用簡單命令並提供在線視頻的網頁地址即可讓程序自動進行嗅探、下載、合並、命名和清理,最終得到已經命名的完整視頻文件。

(GitHub: htt ps://github.com/rg3/youtube-dl )

(10)System Design Primer

此repo是一個系統的資源集合,可幫助你了解如何大規模構建系統。

(GitHub: https://github.com/donnemartin/system-design-primer )

(11)Mask R-CNN

Mask R-CNN用於對象檢測和分割。這是對Python 3,Keras和TensorFlow的Mask R-CNN實現。該模型為圖像中對象的每個實例生成邊界框和分割蒙版。它基於特Feature Pyramid Network(FPN)和 ResNet101 backbone。

(GitHub: https://github.com/matterport/Mask_RCNN )

(12)Face Recognition

Face Recognition 是一個基於 Python 的人臉識別庫,使用十分簡便。這還提供了一個簡單的face_recognition命令行工具,可以讓您從命令行對圖像文件夾進行人臉識別!

(GitHub: https://github.com/ageitgey/face_recognition )

(13)snallygaster

用於掃描HTTP伺服器上的機密文件的工具。

(GitHub: https://github.com/hannob/snallygaster )

(14)Ansible

Ansible是一個極其簡單的IT自動化系統。它可用於配置管理,應用程序部署,雲配置,支持遠程任務執行和多節點發布 - 包括通過負載平衡器輕松實現零停機滾動更新等操作。

(GitHub: https://github.com/ansible/ansible )

(15)Detectron

Detectron是Facebook AI 研究院開源的的軟體系統,它實現了最先進的目標檢測演算法,包括Mask R-CNN。它是用Python編寫的,由Caffe2深度學習框架提供支持。

(16)asciinema

終端會話記錄器和asciinema.org的最佳搭檔。

(GitHub: https://github.com/asciinema/asciinema )

(17)HTTPie

HTTPie 是一個開源的命令行的 HTTP 工具包,其目標是使與Web服務的CLI交互盡可能人性化。它提供了一個簡單的http命令,允許使用簡單自然的語法發送任意HTTP請求,並顯示彩色輸出。HTTPie可用於測試,調試以及通常與HTTP伺服器交互。

(GitHub: https://github.com/jakubroztocil/httpie )

(18)You-Get

You-Get是一個小型命令行實用程序,用於從Web下載媒體內容(視頻,音頻,圖像),支持國內外常用的視頻網站。

(GitHub: https://github.com/soimort/you-get )

(19)Sentry

Sentry從根本上講是一項服務,可以幫助用戶實時監控和修復崩潰。基於Django構建,它包含一個完整的API,用於從任何語言、任何應用程序中發送事件。

(GitHub: https://github.com/getsentry/sentry )

(20)Tornado

Tornado是使用Python開發的全棧式(full-stack)Web框架和非同步網路庫,,最初是由FriendFeed上開發的。通過使用非阻塞網路I / O,Tornado可以擴展到數萬個開放連接,是long polling、WebSockets和其他需要為用戶維護長連接應用的理想選擇。

(GitHub: https://github.com/tornadoweb/tornado )

(21)Magenta

Magenta是一個探索機器學習在創造藝術和音樂過程中的作用的研究項目。這主要涉及開發新的深度學習和強化學習演算法,用於生成歌曲,圖像,繪圖等。但它也是構建智能工具和界面的探索,它允許藝術家和音樂家使用這些模型。

(GitHub: https://github.com/tensorflow/magenta )

(22)ZeroNet

ZeroNet是一個利用比特幣的加密演算法和BitTorrent技術提供的不受審查的網路,完全開源。

(GitHub: https://github.com/HelloZeroNet/ZeroNet )

(23)Gym

OpenAI Gym是一個用於開發和比較強化學習演算法的工具包。這是Gym的開源庫,可讓讓你訪問標准化的環境。

(GitHub: https://github.com/openai/gym )

(24)Pandas

Pandas是一個Python包,提供快速,靈活和富有表現力的數據結構,該工具是為了解決數據分析任務而創建的。Pandas 納入了大量庫和一些標準的數據模型,提供了高效地操作大型數據集所需的工具。此外,它還有更廣泛的目標,即成為所有語言中最強大,最靈活的開源數據分析/操作工具。它目前已經朝著這個目標邁進。

(GitHub: https://github.com/pandas-dev/pandas )

(25)Luigi

Luigi 是一個 Python 模塊,可以幫你構建復雜的批量作業管道。處理依賴決議、工作流管理、可視化展示等等,內建 Hadoop 支持。(GitHub: https://github.com/spotify/luigi )

4. Python能用來做什麼

Python 語言主要有以下用途:
1) 簡單:Python 是一種代表簡單主義思想的語言。閱讀一個良好的 Python 程序就感覺像是在讀英語一樣,盡管這個英語的要求非常嚴格。Python 的這種偽代碼本質是其優點之一,使用戶能夠專注於解決問題而不是去搞明白語言本身。
2) 易學:Python 有極其簡單的語法,非常容易上手。
3) 免費、開源:Python 是 FLOSS(自由/開源軟體)之一。簡單來說,用戶可以自由地發布這個軟體的拷貝、閱讀它的源代碼、對它做改動、把它的一部分用於新的自由軟體中。FLOSS 是基於一個團體分享知識的概念,這也是為什麼 Python 如此優秀的原因之一:它由一群希望看到 Python 更加優秀的人創造,並被他們不斷改進。
4) 高層語言:使用 Python 語言編寫程序時,不用考慮如何管理程序使用的內存等底層細節。
5) 可移植性強:由於它的開源本質,Python 已經被移植在許多平台上。如果 Python 程序沒有使用依賴於系統的特性,那麼程序不用修改就可以在下述任意平台上面運行。這些平台包括 linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、Palm OS、QNX、VMS、Psion、Acom RISC OS、VxWorks、PlayStation、Sharp Zaurus、Windows CE、Pocket PC 和 Symbian。
6) 解釋型語言:編譯型語言(如 C 或 C++)源程序從源文件(即 C 或 C++ 語言)轉換到二進制代碼(即 0 和 1)的過程通過編譯器和不同的標記、選項完成,當運行程序的時候,連接器把程序從硬碟復制到內存中並且運行。而 Python 程序不需要編譯成二進制代碼,直接從源代碼運行程序。
在計算機內部,Python 解釋器把源代碼轉換成位元組碼的中間形式,然後再把它翻譯成計算機使用的機器語言並運行。因此,用戶不再需要操心如何編譯程序、如何確保指定了正確的模塊或包文件等細節,所有這一切使得使用 Python 更加簡單。同時,由於只需要把 Python 程序拷貝到另外一台計算機上即可工作,這也使得 Python 程序更加易於移植。
7) 面向對象:Python 既支持面向過程的編程也支持面向對象的編程。在面向過程的語言中,程序是由過程或僅僅是可重用代碼的函數構建起來的。在面向對象的語言中,程序是由數據和功能組合而成的對象構建起來的。與其他語言(如 C++ 和 Java)相比,Python 以一種非常強大又簡單的方式實現面向對象編程。
8) 可擴展性強:如果希望把一段關鍵代碼運行得更快或希望某些演算法不公開,可以使用 C 或 C++ 語言編寫這部分程序,然後在 Python 程序中調用它們。
9) 可嵌入性強:可以把 Python 嵌入 C/C++ 程序,從而向用戶提供腳本功能。
10) 豐富的擴展庫:Python 擴展庫很龐大,可以幫助處理包括正則表達式、文檔生成、單元測試、線程、資料庫、網頁瀏覽器、CGI、FTP、電子郵件、XML、XML-RPC、HTML、WAV 文件、密碼系統、GUI(圖形用戶界面)、Tk 以及其他與系統有關的操作。只要安裝了 Python,所有這些功能都是可用的,這被稱作 Python 的「功能齊全」理念。除了擴展庫以外,還有許多其他高質量的庫,如 wxPython、Twisted 和 Python 圖像庫等。

5. 為什麼運維用python

基於Python本身的優點:簡單,易學,速度快,免費、開源,高層語言,可移植性,解釋性,可擴展性,可嵌入性,豐富的庫,獨特的語法。Python已經成為現在編程的必備語言。作為「膠水語言」它能夠把其他語言製作的各種模塊輕松聯結在一起。
比起C和Java,Python的魅力更為突顯,因為完成同一項任務,C語言需要1000行代碼,Java只需要100行代碼,而Python可能只需要20行就輕松搞定。
相關推薦:《Python入門教程》
Python在系統運維上的優勢在於其強大的開發多能力和完整的工業鏈,它的開發能力遠強於各種Shell和Perl,的確通過Shell腳本來實現自動化運維!藉助自動化運維來實現大規模集群維護的想法是對的,但由於Shell本身的可編程能力較弱,對很多日常維護中需要的特性支持不夠,也沒有現成的庫可以借鑒,各種功能都需要從頭寫起,所以說Shell腳本力量不夠。
而現Python是更好的選擇,Python除了易讀易寫更兼具面向對象和函數式風格,已經成為IT運維、科學計算、數據處理等領域的主要編譯語言。通過系統化的將各種管理工具結合,對各類工具進行二次開發,形成統一的伺服器管理系統。
和Python類似的Ruby也很適合編寫系統管理軟體,但是在相關庫和工具上比Python差遠了。
讓系統易運維管理是一個工程,Python在伺服器管理工具上非常豐富:配置管理(Saltstack)、批量執行( Fabric, saltstack)、監控(Zenoss, nagios 插件)、虛擬化管理( Python-libvirt)、進程管理 (Supervisor)、雲計算(Openstack)等,大部分系統C庫都有Python綁定。
作為一門編程語言,Python幾乎可以用在任何領域和場合,自身帶有無限可能,擔任任何角色。
從國內的豆瓣、搜狐、金山、騰訊、盛大、網易、網路、阿里、淘寶、熱酷、土豆、新浪、到國外的谷歌、NASA、YouTube、Facebook等互聯網巨頭公司都用Python完成各項任務。
隨著雲計算技術的發展與成熟,低端運維人員的市場越來越小,甚至是沒有市場,因為中小型公司不需要運維,而大公司的門檻高,低端運維沒有核心競爭力,會工程開發能力的運維才是大企業喜聞樂見的。
掌握Linux技能是一個運維人員的基本,要勝任大公司以企業及的運維工作光會Linux還遠遠不夠。Linux+Python是運維的最佳搭配。

6. 使用python,在linux上監控遠程windows的CPU、硬碟、內存使用率

你需要安裝wmic,它實現了linux下能使用wmi,安裝以後就可以用了,下面是例子。
import wmi_client_wrapper as wmi
wmic = wmi.WmiClientWrapper(
username="Administrator",
password="password",
host="192.168.1.149",
)
output = wmic.query("SELECT * FROM Win32_Processor")

7. python常用到哪些庫

Python作為一個設計優秀的程序語言,現在已廣泛應用於各種領域,依靠其強大的第三方類庫,Python在各個領域都能發揮巨大的作用。
下面我們就來看一下python中常用到的庫:
數值計算庫:
1. NumPy
支持多維數組與矩陣運算,也針對數組運算提供大量的數學函數庫。通常與SciPy和Matplotlib一起使用,支持比Python更多種類的數值類型,其中定義的最重要的對象是稱為ndarray的n維數組類型,用於描述相同類型的元素集合,可以使用基於0的索引訪問集合中元素。
2. SciPy
在NumPy庫的基礎上增加了眾多的數學、科學及工程計算中常用的庫函數,如線性代數、常微分方程數值求解、信號處理、圖像處理、稀疏矩陣等,可進行插值處理、信號濾波,以及使用C語言加速計算。
3. Pandas
基於NumPy的一種工具,為解決數據分析任務而生。納入大量庫和一些標準的數據模型,提供高效地操作大型數據集所需的工具及大量的能快速便捷處理數據的函數和方法,為時間序列分析提供很好的支持,提供多種數據結構,如Series、Time-Series、DataFrame和Panel。
數據可視化庫:
4. Matplotlib
第一個Python可視化庫,有許多別的程序庫都是建立在其基礎上或者直接調用該庫,可以很方便地得到數據的大致信息,功能非常強大,但也非常復雜。
5. Seaborn
利用了Matplotlib,用簡潔的代碼來製作好看的圖表。與Matplotlib最大的區別為默認繪圖風格和色彩搭配都具有現代美感。
6. ggplot
基於R的一個作圖庫ggplot2,同時利用了源於《圖像語法》(The Grammar of Graphics)中的概念,允許疊加不同的圖層來完成一幅圖,並不適用於製作非常個性化的圖像,為操作的簡潔度而犧牲了圖像的復雜度。
7. Bokeh
跟ggplot一樣,Bokeh也基於《圖形語法》的概念。與ggplot不同之處為它完全基於Python而不是從R處引用。長處在於能用於製作可交互、可直接用於網路的圖表。圖表可以輸出為JSON對象、HTML文檔或者可交互的網路應用。
8. Plotly
可以通過Python notebook使用,與Bokeh一樣致力於交互圖表的製作,但提供在別的庫中幾乎沒有的幾種圖表類型,如等值線圖、樹形圖和三維圖表。
9. pygal
與Bokeh和Plotly一樣,提供可直接嵌入網路瀏覽器的可交互圖像。與其他兩者的主要區別在於可將圖表輸出為SVG格式,所有的圖表都被封裝成方法,且默認的風格也很漂亮,用幾行代碼就可以很容易地製作出漂亮的圖表。
10. geoplotlib
用於製作地圖和地理相關數據的工具箱。可用來製作多種地圖,比如等值區域圖、熱度圖、點密度圖。必須安裝Pyglet(一個面向對象編程介面)方可使用。
11. missingno
用圖像的方式快速評估數據缺失的情況,可根據數據的完整度對數據進行排序或過濾,或者根據熱度圖或樹狀圖對數據進行修正。
web開發庫:
12. Django
一個高級的Python Web框架,支持快速開發,提供從模板引擎到ORM所需的一切東西,使用該庫構建App時,必須遵循Django的方式。
13. Socket
一個套接字通訊底層庫,用於在伺服器和客戶端間建立TCP或UDP連接,通過連接發送請求與響應。
14. Flask
一個基於Werkzeug、Jinja 2的Python輕量級框架(microframework),默認配備Jinja模板引擎,也包含其他模板引擎或ORM供選擇,適合用來編寫API服務(RESTful rervices)。
15. Twisted
一個使用Python實現的基於事件驅動的網路引擎框架,建立在deferred object之上,一個通過非同步架構實現的高性能的引擎,不適用於編寫常規的Web Apps,更適用於底層網路。
資料庫管理:

16. MySQL-python
又稱MySQLdb,是Python連接MySQL最流行的一個驅動,很多框架也基於此庫進行開發。只支持Python 2.x,且安裝時有許多前置條件。由於該庫基於C語言開發,在Windows平台上的安裝非常不友好,經常出現失敗的情況,現在基本不推薦使用,取代品為衍生版本。
17. mysqlclient
完全兼容MySQLdb,同時支持Python 3.x,是Django ORM的依賴工具,可使用原生SQL來操作資料庫,安裝方式與MySQLdb一致。
18. PyMySQL
純Python實現的驅動,速度比MySQLdb慢,最大的特點為安裝方式簡潔,同時也兼容MySQL-python。
19. SQLAlchemy
一種既支持原生SQL,又支持ORM的工具。ORM是Python對象與資料庫關系表的一種映射關系,可有效提高寫代碼的速度,同時兼容多種資料庫系統,如SQLite、MySQL、PostgreSQL,代價為性能上的一些損失。
自動化運維:
20. jumpsever跳板機
一種由Python編寫的開源跳板機(堡壘機)系統,實現了跳板機的基本功能,包含認證、授權和審計,集成了Ansible、批量命令等。
支持WebTerminal Bootstrap編寫,界面美觀,自動收集硬體信息,支持錄像回放、命令搜索、實時監控、批量上傳下載等功能,基於SSH協議進行管理,客戶端無須安裝agent。主要用於解決可視化安全管理,因完全開源,容易再次開發。
21. Mage分布式監控系統
一種用Python開發的自動化監控系統,可監控常用系統服務、應用、網路設備,可在一台主機上監控多個不同服務,不同服務的監控間隔可以不同,同一個服務在不同主機上的監控間隔、報警閾值可以不同,並提供數據可視化界面。
22. Mage的CMDB
一種用Python開發的硬體管理系統,包含採集硬體數據、API、頁面管理3部分功能,主要用於自動化管理筆記本、路由器等常見設備的日常使用。由伺服器的客戶端採集硬體數據,將硬體信息發送至API,API負責將獲取的數據保存至資料庫中,後台管理程序負責對伺服器信息進行配置和展示。
23. 任務調度系統
一種由Python開發的任務調度系統,主要用於自動化地將一個服務進程分布到其他多個機器的多個進程中,一個服務進程可作為調度者依靠網路通信完成這一工作。
24. Python運維流程系統
一種使用Python語言編寫的調度和監控工作流的平台,內部用於創建、監控和調整數據管道。允許工作流開發人員輕松創建、維護和周期性地調度運行工作流,包括了如數據存儲、增長分析、Email發送、A/B測試等諸多跨多部門的用例。
GUI編程:
25. Tkinter
一個Python的標准GUI庫,可以快速地創建GUI應用程序,可以在大多數的UNIX平台下使用,同樣可以應用在Windows和Macintosh系統中,Tkinter 8.0的後續版本可以實現本地窗口風格,並良好地運行在絕大多數平台中。
26. wxPython
一款開源軟體跨平台GUI庫wxWidgets的Python封裝和Python模塊,是Python語言的一套優秀的GUI圖形庫,允許程序員很方便地創建完整的、功能健全的GUI用戶界面。
27. PyQt
一個創建GUI應用程序的工具庫,是Python編程語言和Qt的成功融合,可以運行在所有主要操作系統上,包括UNIX、Windows和Mac。PyQt採用雙許可證,開發人員可以選擇GPL和商業許可,從PyQt的版本4開始,GPL許可證可用於所有支持的平台。
28. PySide
一個跨平台的應用程式框架Qt的Python綁定版本,提供與PyQt類似的功能,並相容API,但與PyQt不同處為其使用LGPL授權。
更多Python知識請關注Python自學網。

熱點內容
代號治癒如何創建伺服器 發布:2024-11-07 16:50:25 瀏覽:45
dos強制刪除文件夾 發布:2024-11-07 16:41:05 瀏覽:294
java協程框架 發布:2024-11-07 16:30:55 瀏覽:380
預測擬合演算法 發布:2024-11-07 16:30:45 瀏覽:663
橙光原始密碼是多少 發布:2024-11-07 16:24:33 瀏覽:34
安卓電話密碼是什麼 發布:2024-11-07 16:14:44 瀏覽:317
戰網客戶端文件夾 發布:2024-11-07 16:02:42 瀏覽:123
我的世界伺服器轉賬點券的指令 發布:2024-11-07 15:57:34 瀏覽:268
馬桶解壓 發布:2024-11-07 15:57:32 瀏覽:890
手機游戲蘋果和安卓哪個好 發布:2024-11-07 15:55:36 瀏覽:701