當前位置:首頁 » 編程語言 » python大數據實例

python大數據實例

發布時間: 2023-02-22 23:47:21

㈠ 如何利用python進行數據分析

近年來分析學在數據、網路、金融等領域獲得了突出的地位。應用各種軟體組合起來進行數據收集,數據管理,以及數據分析,得出的結論用作商業決策,業務需求分析等等。分析學用於研究一個產品的市場效應,銀行的貸款決定,這些都只是分析學的冰山一角。它在大數據,安全,數字和軟體分析等領域有很深遠的影響,下面是Python在分析學中的主要作用的一個延續:
在這個信息過載的世界,只有那些可以利用解析數據的優勢來得出見解的人會獲益。Python對於大數據的解釋和分析具有很重要的作用。分析公司開發的很多工具都是基於Python來約束大數據塊。分析師們會發現Python並不難學,它是一個強有力的數據管理和業務支持的媒介。
使用單一的語言來處理數據有它的好處。如果你以前曾經使用過C++或者java,那麼對你來說,Python應該很簡單。數據分析可以使用Python實現,有足夠的Python庫來支持數據分析。 Pandas是一個很好的數據分析工具,因為它的工具和結構很容易被用戶掌握。對於大數據來說它無疑是一個最合適的選擇。即使是在數據科學領域,Python也因為它的「開發人員友好性」而使其他語言相形見絀。一個數據科學家熟悉Python的可能性要比熟悉其他語言的可能性高得多。
除了Python在數據分析中那些很明顯的優點(易學,大量的在線社區等等)之外,在數據科學中的廣泛使用,以及我們今天看到的大多數基於網路的分析,是Python在數據分析領域得以廣泛傳播的主要原因。
不論是金融衍生品還時大數據分析,Python都發揮了重要的作用。就前者而言,Python能夠很好地和其它系統,軟體工具以及數據流結合在一起,當然也包括R。用Python來對大數據做圖表效果更好,它在速度和幫助方面也一樣可靠。有些公司使用Python進行預測分析和統計分析。

㈡ python大數據挖掘系列之基礎知識入門 知識整理(入門教程含源碼

Python在大數據行業非常火爆近兩年,as a pythonic,所以也得涉足下大數據分析,下面就聊聊它們。

Python數據分析與挖掘技術概述

所謂數據分析,即對已知的數據進行分析,然後提取出一些有價值的信息,比如統計平均數,標准差等信息,數據分析的數據量可能不會太大,而數據挖掘,是指對大量的數據進行分析與挖倔,得到一些未知的,有價值的信息等,比如從網站的用戶和用戶行為中挖掘出用戶的潛在需求信息,從而對網站進行改善等。
數據分析與數據挖掘密不可分,數據挖掘是對數據分析的提升。數據挖掘技術可以幫助我們更好的發現事物之間的規律。所以我們可以利用數據挖掘技術可以幫助我們更好的發現事物之間的規律。比如發掘用戶潛在需求,實現信息的個性化推送,發現疾病與病狀甚至病與葯物之間的規律等。

預先善其事必先利其器

我們首先聊聊數據分析的模塊有哪些:

下面就說說這些模塊的基礎使用。

numpy模塊安裝與使用

安裝:
下載地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/
我這里下載的包是1.11.3版本,地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
下載好後,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安裝的numpy版本一定要是帶mkl版本的,這樣能夠更好支持numpy

numpy簡單使用

生成隨機數

主要使用numpy下的random方法。

pandas

使用 pip install pandas 即可

直接上代碼:
下面看看pandas輸出的結果, 這一行的數字第幾列,第一列的數字是行數,定位一個通過第一行,第幾列來定位:

常用方法如下:

下面看看pandas對數據的統計,下面就說說每一行的信息

轉置功能:把行數轉換為列數,把列數轉換為行數,如下所示:

通過pandas導入數據

pandas支持多種輸入格式,我這里就簡單羅列日常生活最常用的幾種,對於更多的輸入方式可以查看源碼後者官網。

CSV文件

csv文件導入後顯示輸出的話,是按照csv文件默認的行輸出的,有多少列就輸出多少列,比如我有五列數據,那麼它就在prinit輸出結果的時候,就顯示五列

excel表格

依賴於xlrd模塊,請安裝它。
老樣子,原滋原味的輸出顯示excel本來的結果,只不過在每一行的開頭加上了一個行數

讀取sql

依賴於PyMySQL,所以需要安裝它。pandas把sql作為輸入的時候,需要制定兩個參數,第一個是sql語句,第二個是sql連接實例。

讀取HTML

依賴於lxml模塊,請安裝它。
對於HTTPS的網頁,依賴於BeautifulSoup4,html5lib模塊。
讀取HTML只會讀取HTML里的表格,也就是只讀取

顯示的是時候是通過python的列表展示,同時添加了行與列的標識

讀取txt文件

輸出顯示的時候同時添加了行與列的標識

scipy

安裝方法是先下載whl格式文件,然後通過pip install 「包名」 安裝。whl包下載地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl

matplotlib 數據可視化分析

我們安裝這個模塊直接使用pip install即可。不需要提前下載whl後通過 pip install安裝。

下面請看代碼:

下面說說修改圖的樣式

關於圖形類型,有下面幾種:

關於顏色,有下面幾種:

關於形狀,有下面幾種:

我們還可以對圖稍作修改,添加一些樣式,下面修改圓點圖為紅色的點,代碼如下:

我們還可以畫虛線圖,代碼如下所示:

還可以給圖添加上標題,x,y軸的標簽,代碼如下所示

直方圖

利用直方圖能夠很好的顯示每一段的數據。下面使用隨機數做一個直方圖。

Y軸為出現的次數,X軸為這個數的值(或者是范圍)

還可以指定直方圖類型通過histtype參數:

圖形區別語言無法描述很詳細,大家可以自信嘗試。

舉個例子:

子圖功能

什麼是子圖功能呢?子圖就是在一個大的畫板裡面能夠顯示多張小圖,每個一小圖為大畫板的子圖。
我們知道生成一個圖是使用plot功能,子圖就是subplog。代碼操作如下:

我們現在可以通過一堆數據來繪圖,根據圖能夠很容易的發現異常。下面我們就通過一個csv文件來實踐下,這個csv文件是某個網站的文章閱讀數與評論數。


先說說這個csv的文件結構,第一列是序號,第二列是每篇文章的URL,第三列每篇文章的閱讀數,第四列是每篇評論數。


我們的需求就是把評論數作為Y軸,閱讀數作為X軸,所以我們需要獲取第三列和第四列的數據。我們知道獲取數據的方法是通過pandas的values方法來獲取某一行的值,在對這一行的值做切片處理,獲取下標為3(閱讀數)和4(評論數)的值,但是,這里只是一行的值,我們需要是這個csv文件下的所有評論數和閱讀數,那怎麼辦?聰明的你會說,我自定義2個列表,我遍歷下這個csv文件,把閱讀數和評論數分別添加到對應的列表裡,這不就行了嘛。呵呵,其實有一個更快捷的方法,那麼就是使用T轉置方法,這樣再通過values方法,就能直接獲取這一評論數和閱讀數了,此時在交給你matplotlib里的pylab方法來作圖,那麼就OK了。了解思路後,那麼就寫吧。

下面看看代碼:

㈢ 《零起點Python大數據與量化交易》pdf下載在線閱讀,求百度網盤雲資源

《零起點Python大數據與量化交易》(何海群)電子書網盤下載免費在線閱讀

鏈接:https://pan..com/s/1NU-wBfdVmrtklf9xuq1d3A

密碼:v1pf

書名:零起點Python大數據與量化交易

作者:何海群

豆瓣評分:3.9

出版社:電子工業出版社

出版年份:2017-2

頁數:444

內容簡介:

《零起點Python大數據與量化交易》是國內較早關於Python大數據與量化交易的原創圖書,配合zwPython開發平台和zwQuant開源量化軟體學習,是一套完整的大數據分析、量化交易的學習教材,可直接用於實盤交易。《零起點Python大數據與量化交易》有三大特色:第一,以實盤個案分析為主,全程配有Python代碼;第二,包含大量的圖文案例和Python源碼,無須專業編程基礎,懂Excel即可開始學習;第三,配有專業的zwPython集成開發平台、zwQuant量化軟體和zwDat數據包。

《零起點Python大數據與量化交易》內容源自筆者的原版教學課件,雖然限於篇幅和載體,省略了視頻和部分環節,但核心內容都有保留,配套的近百套Python教學程序沒有進行任何刪減。考慮到廣大入門讀者的需求,筆者在各個核心函數環節增添了函數流程圖。

㈣ 大數據與python有什麼關系,學完大數據以後能做Python嗎

大數據可以看作一門學科,python是一種編程語言,大數據的課程安排中肯定包含python學習。

給你舉個例子:南京北大青鳥大數據學習需要掌握:Java編程基礎,Hadoop生態圈,Spark相關技術,Python,項目開發實戰,系統管理優化,企業使用阿里雲平台開發所需要的技術等。

畢業後可以從事python相關工作。

㈤ 《Python金融大數據分析》pdf下載在線閱讀,求百度網盤雲資源

《Python金融大數據分析》([德] 伊夫·希爾皮斯科)電子書網盤下載免費在線閱讀

資源鏈接:

鏈接:https://pan..com/s/1qfMtZd2Mn3gtbVfg7fOfOg

提取碼:4io4

書名:Python金融大數據分析

作者:[德] 伊夫·希爾皮斯科

譯者:姚軍

豆瓣評分:7.7

出版社:人民郵電出版社

出版年份:2015-12

頁數:511

內容簡介:唯一一本詳細講解使用Python分析處理金融大數據的專業圖書;金融應用開發領域從業人員必讀。

Python憑借其簡單、易讀、可擴展性以及擁有巨大而活躍的科學計算社區,在需要分析、處理大量數據的金融行業得到了廣泛而迅速的應用,並且成為該行業開發核心應用的首選編程語言。《Python金融大數據分析》提供了使用Python進行數據分析,以及開發相關應用程序的技巧和工具。

《Python金融大數據分析》總計分為3部分,共19章,第1部分介紹了Python在金融學中的應用,其內容涵蓋了Python用於金融行業的原因、Python的基礎架構和工具,以及Python在計量金融學中的一些具體入門實例;第2部分介紹了金融分析和應用程序開發中最重要的Python庫、技術和方法,其內容涵蓋了Python的數據類型和結構、用matplotlib進行數據可視化、金融時間序列數據處理、高性能輸入/輸出操作、高性能的Python技術和庫、金融學中需要的多種數學工具、隨機數生成和隨機過程模擬、Python統計學應用、Python和Excel的集成、Python面向對象編程和GUI的開發、Python與Web技術的集成,以及基於Web應用和Web服務的開發;第3部分關注的是蒙特卡洛模擬期權與衍生品定價實際應用的開發工作,其內容涵蓋了估值框架的介紹、金融模型的模擬、衍生品的估值、投資組合的估值、波動率期權等知識。

《Python金融大數據分析》適合對使用Python進行大數據分析、處理感興趣的金融行業開發人員閱讀。

作者簡介:Yves Hilpsch是Python Quants(德國)股份有限公司的創始人和任事股東,也是Python Quants(紐約)有限責任公司的共同創辦人。該集團提供基於Python的金融和衍生品分析軟體(參見http://pythonquants.com,http://quant-platfrom.com和http://dx-analytics.com),以及和Python及金融相關的咨詢、開發和培訓服務。

Yves還是Derivatives Analytics with Python(Wiley Finance,2015)的作者。作為獲得數理金融學博士學位的商業管理專業研究生,他在薩爾州大學講授計算金融學中的數值化方法課程。

㈥ python怎麼做大數據分析

數據獲取:公開數據、Python爬蟲外部數據的獲取方式主要有以下兩種。(推薦學習:Python視頻教程)
第一種是獲取外部的公開數據集,一些科研機構、企業、政府會開放一些數據,你需要到特定的網站去下載這些數據。這些數據集通常比較完善、質量相對較高。
另一種獲取外部數據的方式就是爬蟲。
比如你可以通過爬蟲獲取招聘網站某一職位的招聘信息,爬取租房網站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網易雲音樂評論排行列表。基於互聯網爬取的數據,你可以對某個行業、某種人群進行分析。
在爬蟲之前你需要先了解一些 Python 的基礎知識:元素(列表、字典、元組等)、變數、循環、函數………
以及,如何用 Python 庫(urlpb、BeautifulSoup、requests、scrapy)實現網頁爬蟲。
掌握基礎的爬蟲之後,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應對不同網站的反爬蟲限制。
數據存取:SQL語言
在應對萬以內的數據的時候,Excel對於一般的分析沒有問題,一旦數據量大,就會力不從心,資料庫就能夠很好地解決這個問題。而且大多數的企業,都會以SQL的形式來存儲數據。
SQL作為最經典的資料庫工具,為海量數據的存儲與管理提供可能,並且使數據的提取的效率大大提升。你需要掌握以下技能:
提取特定情況下的數據
資料庫的增、刪、查、改
數據的分組聚合、如何建立多個表之間的聯系
數據預處理:Python(pandas)
很多時候我們拿到的數據是不幹凈的,數據的重復、缺失、異常值等等,這時候就需要進行數據的清洗,把這些影響分析的數據處理好,才能獲得更加精確地分析結果。
對於數據預處理,學會 pandas (Python包)的用法,應對一般的數據清洗就完全沒問題了。需要掌握的知識點如下:
選擇:數據訪問
缺失值處理:對缺失數據行進行刪除或填充
重復值處理:重復值的判斷與刪除
異常值處理:清除不必要的空格和極端、異常數據
相關操作:描述性統計、Apply、直方圖等
合並:符合各種邏輯關系的合並操作
分組:數據劃分、分別執行函數、數據重組
Reshaping:快速生成數據透視表
概率論及統計學知識
需要掌握的知識點如下:
基本統計量:均值、中位數、眾數、百分位數、極值等
其他描述性統計量:偏度、方差、標准差、顯著性等
其他統計知識:總體和樣本、參數和統計量、ErrorBar
概率分布與假設檢驗:各種分布、假設檢驗流程
其他概率論知識:條件概率、貝葉斯等
有了統計學的基本知識,你就可以用這些統計量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可視化的分析,通過各種可視化統計圖,並得出具有指導意義的結果。
Python 數據分析
掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數的數據進行回歸分析,並得出相對精確地結論。這部分需要掌握的知識點如下:
回歸分析:線性回歸、邏輯回歸
基本的分類演算法:決策樹、隨機森林……
基本的聚類演算法:k-means……
特徵工程基礎:如何用特徵選擇優化模型
調參方法:如何調節參數優化模型
Python 數據分析包:scipy、numpy、scikit-learn等
在數據分析的這個階段,重點了解回歸分析的方法,大多數的問題可以得以解決,利用描述性的統計分析和回歸分析,你完全可以得到一個不錯的分析結論。
當然,隨著你實踐量的增多,可能會遇到一些復雜的問題,你就可能需要去了解一些更高級的演算法:分類、聚類。
然後你會知道面對不同類型的問題的時候更適合用哪種演算法模型,對於模型的優化,你需要去了解如何通過特徵提取、參數調節來提升預測的精度。
你可以通過 Python 中的 scikit-learn 庫來實現數據分析、數據挖掘建模和分析的全過程。
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python怎麼做大數據分析的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

㈦ 如何使用Python分析大數據

毫不誇張地說,大數據已經成為任何商業交流中不可或缺的一部分。桌面和移動搜索向全世界的營銷人員和公司以空前的規模提供著數據,並且隨著物聯網的到來,大量用以消費的數據還會呈指數級增長。這種消費數據對於想要更好地定位目標客戶、弄懂人們怎樣使用他們的產品或服務,並且通過收集信息來提高利潤的公司來說無疑是個金礦。
篩查數據並找到企業真正可以使用的結果的角色落到了軟體開發者、數據科學家和統計學家身上。現在有很多工具輔助大數據分析,但最受歡迎的就是Python。
為什麼選擇Python?
Python最大的優點就是簡單易用。這個語言有著直觀的語法並且還是個強大的多用途語言。這一點在大數據分析環境中很重要,並且許多企業內部已經在使用Python了,比如Google,YouTube,迪士尼,和索尼夢工廠。還有,Python是開源的,並且有很多用於數據科學的類庫。所以,大數據市場急需Python開發者,不是Python開發者的專家也可以以相當塊速度學習這門語言,從而最大化用在分析數據上的時間,最小化學習這門語言的時間。
用Python進行數據分析之前,你需要從Continuum.io下載Anaconda。這個包有著在Python中研究數據科學時你可能需要的一切東西。它的缺點是下載和更新都是以一個單元進行的,所以更新單個庫很耗時。但這很值得,畢竟它給了你所需的所有工具,所以你不需要糾結。
現在,如果你真的要用Python進行大數據分析的話,毫無疑問你需要成為一個Python開發者。這並不意味著你需要成為這門語言的大師,但你需要了解Python的語法,理解正則表達式,知道什麼是元組、字元串、字典、字典推導式、列表和列表推導式——這只是開始。
各種類庫
當你掌握了Python的基本知識點後,你需要了解它的有關數據科學的類庫是怎樣工作的以及哪些是你需要的。其中的要點包括NumPy,一個提供高級數學運算功能的基礎類庫,SciPy,一個專注於工具和演算法的可靠類庫,Sci-kit-learn,面向機器學習,還有Pandas,一套提供操作DataFrame功能的工具。
除了類庫之外,你也有必要知道Python是沒有公認的最好的集成開發環境(IDE)的,R語言也一樣。所以說,你需要親手試試不同的IDE再看看哪個更能滿足你的要求。開始時建議使用IPython Notebook,Rodeo和Spyder。和各種各樣的IDE一樣,Python也提供各種各樣的數據可視化庫,比如說Pygal,Bokeh和Seaborn。這些數據可視化工具中最必不可少的就是Matplotlib,一個簡單且有效的數值繪圖類庫。
所有的這些庫都包括在了Anaconda裡面,所以下載了之後,你就可以研究一下看看哪些工具組合更能滿足你的需要。用Python進行數據分析時你會犯很多錯誤,所以得小心一點。一旦你熟悉了安裝設置和每種工具後,你會發現Python是目前市面上用於大數據分析的最棒的平台之一。
希望能幫到你!

㈧ Python處理大數據的技巧, 2022-06-21

(2022.06.21 Tues)
收集整理了Python處理大量數據的方法,基於Pandas,Numpy等數據處理工具。

用df的 info 方法並指定 memory_usage='deep' 參數,或使用df的 memory_usage 方法,並指定 deep=True 參數。

在讀取數據文件的方法中加入 nrows 參數選擇前n行數據讀取。

也可以跳過m行之後,讀取從m行開始的n行

當然也可以在 skiprows 選項中指定范圍,保留headers,即保留列名

可以指定 skiprows 中需要忽略的行,用list或array導入即可。下面是隨機

如果在這個指令中忽略 nrows=10 指令,則讀取跳過100行之後的所有數據。

預先指定讀入的列,縮小載入范圍

不同的數據類型佔用了不同大小的空間,對於尚未讀取的數據,可以提前指定類型( dtype );對於已經讀入的數據,通過 astype 方法修改成占空間更小的數據類型。

在讀入數據之前,通過字典指定每列對應的數據類型,讀入之後按照此類型顯示數據。

通過改變數據類型減少空間的案例。修改DataFrame d 中的一列 Sctcd ,注意到該列的數據都是1、2、0,而保存類型是object,果斷改成 uint8 ,通過 df.info(memory_usage='deep') 方法對比內存的使用情況。僅僅修改了一個列的類型,數據大小減小3MB。

一個特殊而高效的案例是當某一列的值只有有限個,不管是int還是string格式,且該列unque值遠小於列的長度,可以將該列轉變為 category 類,將節省大量空間。這么做當然也有代價,比如轉換成 category 類的數據將無法做max/min等運算,由數字轉換成的 category 也不能進行數值運算。這種轉換對內存的節省效果顯著,下面是對比。 dcol 只有兩列, Stkcd 和 Stknme ,查看unique的個數與總長度,顯示unique遠小於總長度,分別轉換為 category 類型,內存節省超過90%!

通過Pandas的 read_csv 方法中的 chunksize 選項指定讀取的塊大小,並迭代地對讀取的塊做運算。

1 https冒號//www點dataquest點io/blog/pandas-big-data/
2 CSDN - python 處理大量數據_如何用python處理大量數據
2 How to Work with BIG Datasets on 16G RAM (+Dask), on kaggle

㈨ Python在大數據領域是怎麼來應用的

有些辦法。比如使用array, numpy.array。 主要的思路是節約內存的使用,同時提高數據查詢的效率。

如果能夠注意這些內容,處理幾個GB的數據還是輕松的。 接下來就是分布式計算。 按maprece的思路。數據盡量在本地處理。所以演算法上要優化。主要是分段。

不管怎麼說。這幾個方面所有的語言都是相同的。即使你用的是C語言也一樣要考慮到這些。大數據因為量大,演算法也需要改進。

對於不能改進的演算法(好象還沒有遇到)也只好用python接C的擴展模塊了。 好在python與C有很好的介面。輕松就接上。

最近比較流行的方法是使用cython,一方面可以略略提高速度,另一方面與C有無縫的介面。

java在處理大數據方面速度與易用性略略占優勢。C++也經常會使用在核心演算法上。語言本身都不是問題。大部分時候大數據還是在處理演算法本身而不是語言。

在原型階段python很方便,快速,靈活。所以大數據處理中python是幾種語言中最適合的。特別是早期探索階段。業務與演算法經常變更。到了後期基本上都是C++了。java比較適合工程化階段。

熱點內容
資料庫及約束 發布:2024-11-08 04:53:41 瀏覽:403
我的世界叢林大劍伺服器 發布:2024-11-08 04:52:14 瀏覽:567
壓縮文件到最小 發布:2024-11-08 04:52:05 瀏覽:877
rararchive解壓 發布:2024-11-08 04:51:27 瀏覽:87
xp代理伺服器如何設置 發布:2024-11-08 04:27:20 瀏覽:524
androidpdf轉圖片 發布:2024-11-08 04:08:55 瀏覽:659
強夯壓縮系數 發布:2024-11-08 04:05:35 瀏覽:81
伺服器io錯誤是什麼原因 發布:2024-11-08 04:03:50 瀏覽:14
解壓閑聊 發布:2024-11-08 04:00:08 瀏覽:807
微信安卓為什麼信息延遲 發布:2024-11-08 03:46:57 瀏覽:198