python演算法教程pdf
❶ 想學習python要看什麼書呢(我是初學者)
《深度學習入門》([ 日] 齋藤康毅)電子書網盤下載免費在線閱讀
資源鏈接:
鏈接: https://pan..com/s/1ddnvGv-r9PxjwMLpN0ZQIQ
書名:深度學習入門
作者:[ 日] 齋藤康毅
譯者:陸宇傑
豆瓣評分:9.4
出版社:人民郵電出版社
出版年份:2018-7
頁數:285
內容簡介:本書是深度學習真正意義上的入門書,深入淺出地剖析了深度學習的原理和相關技術。書中使用Python3,盡量不依賴外部庫或工具,從基本的數學知識出發,帶領讀者從零創建一個經典的深度學習網路,使讀者在此過程中逐步理解深度學習。書中不僅介紹了深度學習和神經網路的概念、特徵等基礎知識,對誤差反向傳播法、卷積神經網路等也有深入講解,此外還介紹了深度學習相關的實用技巧,自動駕駛、圖像生成、強化學習等方面的應用,以及為什麼加深層可以提高識別精度等「為什麼」的問題。
作者簡介:
齋藤康毅
東京工業大學畢業,並完成東京大學研究生院課程。現從事計算機視覺與機器學習相關的研究和開發工作。是Introcing Python、Python in Practice、The Elements of Computing Systems、Building Machine Learning Systems with Python的日文版譯者。
譯者簡介:
陸宇傑
眾安科技NLP演算法工程師。主要研究方向為自然語言處理及其應用,對圖像識別、機器學習、深度學習等領域有密切關注。Python愛好者。
❷ python數據分析與應用-Python數據分析與應用 PDF 內部全資料版
給大家帶來的一篇關於Python數據相關的電子書資源,介紹了關於Python方面的內容,本書是由人民郵電出版社出版,格式為PDF,資源大小281 MB,黃紅梅 張良均編寫,目前豆瓣、亞馬遜、當當、京東等電子書綜合評分為:7.8。
內容介紹
目錄
第1章Python數據分析概述1
任務1.1認識數據分析1
1.1.1掌握數據分析的概念2
1.1.2掌握數據分析的流程2
1.1.3了解數據分析應用場景4
任務1.2熟悉Python數據分析的工具5
1.2.1了解數據分析常用工具6
1.2.2了解Python數據分析的優勢7
1.2.3了解Python數據分析常用類庫7
任務1.3安裝Python的Anaconda發行版9
1.3.1了解Python的Anaconda發行版9
1.3.2在Windows系統中安裝Anaconda9
1.3.3在Linux系統中安裝Anaconda12
任務1.4掌握Jupyter Notebook常用功能14
1.4.1掌握Jupyter Notebook的基本功能14
1.4.2掌握Jupyter Notebook的高 級功能16
小結19
課後習題19
第2章NumPy數值計算基礎21
任務2.1掌握NumPy數組對象ndarray21
2.1.1創建數組對象21
2.1.2生成隨機數27
2.1.3通過索引訪問數組29
2.1.4變換數組的形態31
任務2.2掌握NumPy矩陣與通用函數34
2.2.1創建NumPy矩陣34
2.2.2掌握ufunc函數37
任務2.3利用NumPy進行統計分析41
2.3.1讀/寫文件41
2.3.2使用函數進行簡單的統計分析44
2.3.3任務實現48
小結50
實訓50
實訓1創建數組並進行運算50
實訓2創建一個國際象棋的棋盤50
課後習題51
第3章Matplotlib數據可視化基礎52
任務3.1掌握繪圖基礎語法與常用參數52
3.1.1掌握pyplot基礎語法53
3.1.2設置pyplot的動態rc參數56
任務3.2分析特徵間的關系59
3.2.1繪制散點圖59
3.2.2繪制折線圖62
3.2.3任務實現65
任務3.3分析特徵內部數據分布與分散狀況68
3.3.1繪制直方圖68
3.3.2繪制餅圖70
3.3.3繪制箱線圖71
3.3.4任務實現73
小結77
實訓78
實訓1分析1996 2015年人口數據特徵間的關系78
實訓2分析1996 2015年人口數據各個特徵的分布與分散狀況78
課後習題79
第4章pandas統計分析基礎80
任務4.1讀/寫不同數據源的數據80
4.1.1讀/寫資料庫數據80
4.1.2讀/寫文本文件83
4.1.3讀/寫Excel文件87
4.1.4任務實現88
任務4.2掌握DataFrame的常用操作89
4.2.1查看DataFrame的常用屬性89
4.2.2查改增刪DataFrame數據91
4.2.3描述分析DataFrame數據101
4.2.4任務實現104
任務4.3轉換與處理時間序列數據107
4.3.1轉換字元串時間為標准時間107
4.3.2提取時間序列數據信息109
4.3.3加減時間數據110
4.3.4任務實現111
任務4.4使用分組聚合進行組內計算113
4.4.1使用groupby方法拆分數據114
4.4.2使用agg方法聚合數據116
4.4.3使用apply方法聚合數據119
4.4.4使用transform方法聚合數據121
4.4.5任務實現121
任務4.5創建透視表與交叉表123
4.5.1使用pivot_table函數創建透視表123
4.5.2使用crosstab函數創建交叉表127
4.5.3任務實現128
小結130
實訓130
實訓1讀取並查看P2P網路貸款數據主表的基本信息130
實訓2提取用戶信息更新表和登錄信息表的時間信息130
實訓3使用分組聚合方法進一步分析用戶信息更新表和登錄信息表131
實訓4對用戶信息更新表和登錄信息表進行長寬表轉換131
課後習題131
第5章使用pandas進行數據預處理133
任務5.1合並數據133
5.1.1堆疊合並數據133
5.1.2主鍵合並數據136
5.1.3重疊合並數據139
5.1.4任務實現140
任務5.2清洗數據141
5.2.1檢測與處理重復值141
5.2.2檢測與處理缺失值146
5.2.3檢測與處理異常值149
5.2.4任務實現152
任務5.3標准化數據154
5.3.1離差標准化數據154
5.3.2標准差標准化數據155
5.3.3小數定標標准化數據156
5.3.4任務實現157
任務5.4轉換數據158
5.4.1啞變數處理類別型數據158
5.4.2離散化連續型數據160
5.4.3任務實現162
小結163
實訓164
實訓1插補用戶用電量數據缺失值164
實訓2合並線損、用電量趨勢與線路告警數據164
實訓3標准化建模專家樣本數據164
課後習題165
第6章使用scikit-learn構建模型167
任務6.1使用sklearn轉換器處理數據167
6.1.1載入datasets模塊中的數據集167
6.1.2將數據集劃分為訓練集和測試集170
6.1.3使用sklearn轉換器進行數據預處理與降維172
6.1.4任務實現174
任務6.2構建並評價聚類模型176
6.2.1使用sklearn估計器構建聚類模型176
6.2.2評價聚類模型179
6.2.3任務實現182
任務6.3構建並評價分類模型183
6.3.1使用sklearn估計器構建分類模型183
6.3.2評價分類模型186
6.3.3任務實現188
任務6.4構建並評價回歸模型190
6.4.1使用sklearn估計器構建線性回歸模型190
6.4.2評價回歸模型193
6.4.3任務實現194
小結196
實訓196
實訓1使用sklearn處理wine和wine_quality數據集196
實訓2構建基於wine數據集的K-Means聚類模型196
實訓3構建基於wine數據集的SVM分類模型197
實訓4構建基於wine_quality數據集的回歸模型197
課後習題198
第7章航空公司客戶價值分析199
任務7.1了解航空公司現狀與客戶價值分析199
7.1.1了解航空公司現狀200
7.1.2認識客戶價值分析201
7.1.3熟悉航空客戶價值分析的步驟與流程201
任務7.2預處理航空客戶數據202
7.2.1處理數據缺失值與異常值202
7.2.2構建航空客戶價值分析關鍵特徵202
7.2.3標准化LRFMC模型的5個特徵206
7.2.4任務實現207
任務7.3使用K-Means演算法進行客戶分群209
7.3.1了解K-Means聚類演算法209
7.3.2分析聚類結果210
7.3.3模型應用213
7.3.4任務實現214
小結215
實訓215
實訓1處理信用卡數據異常值215
實訓2構造信用卡客戶風險評價關鍵特徵217
實訓3構建K-Means聚類模型218
課後習題218
第8章財政收入預測分析220
任務8.1了解財政收入預測的背景與方法220
8.1.1分析財政收入預測背景220
8.1.2了解財政收入預測的方法222
8.1.3熟悉財政收入預測的步驟與流程223
任務8.2分析財政收入數據特徵的相關性223
8.2.1了解相關性分析223
8.2.2分析計算結果224
8.2.3任務實現225
任務8.3使用Lasso回歸選取財政收入預測的關鍵特徵225
8.3.1了解Lasso回歸方法226
8.3.2分析Lasso回歸結果227
8.3.3任務實現227
任務8.4使用灰色預測和SVR構建財政收入預測模型228
8.4.1了解灰色預測演算法228
8.4.2了解SVR演算法229
8.4.3分析預測結果232
8.4.4任務實現234
小結236
實訓236
實訓1求取企業所得稅各特徵間的相關系數236
實訓2選取企業所得稅預測關鍵特徵237
實訓3構建企業所得稅預測模型237
課後習題237
第9章家用熱水器用戶行為分析與事件識別239
任務9.1了解家用熱水器用戶行為分析的背景與步驟239
9.1.1分析家用熱水器行業現狀240
9.1.2了解熱水器採集數據基本情況240
9.1.3熟悉家用熱水器用戶行為分析的步驟與流程241
任務9.2預處理熱水器用戶用水數據242
9.2.1刪除冗餘特徵242
9.2.2劃分用水事件243
9.2.3確定單次用水事件時長閾值244
9.2.4任務實現246
任務9.3構建用水行為特徵並篩選用水事件247
9.3.1構建用水時長與頻率特徵248
9.3.2構建用水量與波動特徵249
9.3.3篩選候選洗浴事件250
9.3.4任務實現251
任務9.4構建行為事件分析的BP神經網路模型255
9.4.1了解BP神經網路演算法原理255
9.4.2構建模型259
9.4.3評估模型260
9.4.4任務實現260
小結263
實訓263
實訓1清洗運營商客戶數據263
實訓2篩選客戶運營商數據264
實訓3構建神經網路預測模型265
課後習題265
附錄A267
附錄B270
參考文獻295
學習筆記
Jupyter Notebook(此前被稱為 IPython notebook)是一個互動式筆記本,支持運行 40 多種編程語言。 Jupyter Notebook 的本質是一個 Web 應用程序,便於創建和共享文學化程序文檔,支持實時代碼,數學方程,可視化和 markdown。 用途包括:數據清理和轉換,數值模擬,統計建模,機器學習等等 。 定義 (推薦學習:Python視頻教程) 用戶可以通過電子郵件,Dropbox,GitHub 和 Jupyter Notebook Viewer,將 Jupyter Notebook 分享給其他人。 在Jupyter Notebook 中,代碼可以實時的生成圖像,視頻,LaTeX和JavaScript。 使用 數據挖掘領域中最熱門的比賽 Kaggle 里的資料都是Jupyter 格式 。 架構 Jupyter組件 Jupyter包含以下組件: Jupyter Notebook 和 ……
本文實例講述了Python實現的微信好友數據分析功能。分享給大家供大家參考,具體如下: 這里主要利用python對個人微信好友進行分析並把結果輸出到一個html文檔當中,主要用到的python包為 itchat , pandas , pyecharts 等 1、安裝itchat 微信的python sdk,用來獲取個人好友關系。獲取的代碼 如下: import itchatimport pandas as pdfrom pyecharts import Geo, Baritchat.login()friends = itchat.get_friends(update=True)[0:]def User2dict(User): User_dict = {} User_dict["NickName"] = User["NickName"] if User["NickName"] else "NaN" User_dict["City"] = User["City"] if User["City"] else "NaN" User_dict["Sex"] = User["Sex"] if User["Sex"] else 0 User_dict["Signature"] = User["Signature"] if User["Signature"] else "NaN" ……
基於微信開放的個人號介面python庫itchat,實現對微信好友的獲取,並對省份、性別、微信簽名做數據分析。 效果: 直接上代碼,建三個空文本文件stopwords.txt,newdit.txt、unionWords.txt,下載字體simhei.ttf或刪除字體要求的代碼,就可以直接運行。 #wxfriends.py 2018-07-09import itchatimport sysimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']#繪圖時可以顯示中文plt.rcParams['axes.unicode_minus']=False#繪圖時可以顯示中文import jiemport jieba.posseg as psegfrom scipy.misc import imreadfrom wordcloud import WordCloudfrom os import path#解決編碼問題non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd) #獲取好友信息def getFriends():……
Python數據分析之雙色球基於線性回歸演算法預測下期中獎結果示例
本文實例講述了Python數據分析之雙色球基於線性回歸演算法預測下期中獎結果。分享給大家供大家參考,具體如下: 前面講述了關於雙色球的各種演算法,這里將進行下期雙色球號碼的預測,想想有些小激動啊。 代碼中使用了線性回歸演算法,這個場景使用這個演算法,預測效果一般,各位可以考慮使用其他演算法嘗試結果。 發現之前有很多代碼都是重復的工作,為了讓代碼看的更優雅,定義了函數,去調用,頓時高大上了 #!/usr/bin/python# -*- coding:UTF-8 -*-#導入需要的包import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport operatorfrom sklearn import datasets,linear_modelfrom sklearn.linear_model import LogisticRegression#讀取文件d……
以上就是本次介紹的Python數據電子書的全部相關內容,希望我們整理的資源能夠幫助到大家,感謝大家對鬼鬼的支持。
注·獲取方式:私信(666)
❸ 《數據結構與演算法Python語言描述》pdf下載在線閱讀全文,求百度網盤雲資源
《數據結構與演算法Python語言描述》網路網盤pdf最新全集下載:
鏈接: https://pan..com/s/13XAS0SLNmxior29Jdxkutw
簡介:數據結構與演算法Python語言描述基於Python語言介紹了數據結構與演算法的基本知識,主要內容包括抽象數據類型和Python面向對象程序設計、線性表、字元串、棧和隊列、二叉樹和樹、集合、排序以及演算法的基本知識。本書延續問題求解的思路,從解決問題的目標來組織教學內容,注重理論與實踐的並用。
❹ Python零基礎入門用什麼書誰有pdf的分享一下
入門的話,建議先看網上的教程自學,比如「python菜鳥教程」(簡單),「python廖雪峰教程」(相對難一點)。這兩個教程不錯,突出重點,也容易學習節約時間。
看完網上上述的其中一個教程之後,可以看pdf版的《python基礎教程(第二版)》,這本書很好,知識比較詳細,條理也清晰。
建議《python基礎教程》學到一定程度的時候,可以選擇自己要深入學習的方向(比如演算法與數據結構、數據分析等),再選擇學習其他的書。(一般學習得比較多的是關於numpy、matplotlib、pandas、scipy的書)
【這也是我自己的學習路線。個人覺得,先學習突出重點的網上教程要好,因為書本往往介紹知識太詳細,一下子給零基礎的學習者灌輸太多知識是很難消化的,也容易失去興趣。當學習了重點知識後,然後再去學習細節,一點點提升難度,效果可能更好。】
❺ 《跟老齊學Python:從入門到精通》pdf下載在線閱讀全文,求百度網盤雲資源
《跟老齊學Python:從入門到精通》網路網盤pdf最新全集下載:
鏈接: https://pan..com/s/1j5RN_7-8vXL_gpC6ODdVZw
簡介:本書是面向編程零基礎讀者的Python入門教程,內容涵蓋了Python的基礎知識和初步應用。以比較輕快的風格,向零基礎的學習者介紹一門時下比較流行、並且用途比較廣泛的編程語言,所以,本書讀起來不晦澀,並且在其中穿插了很多貌似與Python編程無關,但與學習者未來程序員職業生涯有關的內容。
❻ Python核心編程(第二版)PDF和Python基礎教程(第二版)PDF
相關鏈接:網頁鏈接點擊進入然後下載即可。
Python介紹:
Python(英國發音:/ˈpaɪθən/ 美國發音:/ˈpaɪθɑːn/), 是一種面向對象的解釋型計算機程序設計語言,由荷蘭人Guido van Rossum於1989年發明,第一個公開發行版發行於1991年。
Python是純粹的自由軟體,源代碼和解釋器CPython遵循GPL(GNUGeneral Public License)協議。Python語法簡潔清晰,特色之一是強制用空白符(white space)作為語句縮進。
Python具有豐富和強大的庫。它常被昵稱為膠水語言,能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕松地聯結在一起。常見的一種應用情形是,使用Python快速生成程序的原型(有時甚至是程序的最終界面),然後對其中有特別要求的部分,用更合適的語言改寫,比如3D游戲中的圖形渲染模塊,性能要求特別高,就可以用C/C++重寫,而後封裝為Python可以調用的擴展類庫。需要注意的是在您使用擴展類庫時可能需要考慮平台問題,某些可能不提供跨平台的實現。
Python基本演算法:
Python的設計目標之一是讓代碼具備高度的可閱讀性。它設計時盡量使用其它語言經常使用的標點符號和英文單字,讓代碼看起來整潔美觀。它不像其他的靜態語言如C、Pascal那樣需要重復書寫聲明語句,也不像它們的語法那樣經常有特殊情況和意外。
❼ 《Python機器學習預測分析核心演算法Python語言編程教程書籍》pdf下載在線閱讀,求百度網盤雲資源
《Python機器學習》([美] Michael Bowles)電子書網盤下載免費在線閱讀
資源鏈接:
鏈接: https://pan..com/s/1R9hSyI6FDigKF-96ALYQ2g
書名:Python機器學習
作者:[美] Michael Bowles
譯者:沙嬴
豆瓣評分:6.4
出版社:人民郵電出版社
出版年份:2016-12
頁數:320
內容簡介:
在學習和研究機器學習的時候,面臨令人眼花繚亂的演算法,機器學習新手往往會不知
所措。本書從演算法和Python 語言實現的角度,幫助讀者認識機器學習。
書專注於兩類核心的「演算法族」,即懲罰線性回歸和集成方法,並通過代碼實例來
展示所討論的演算法的使用原則。全書共分為7 章,詳細討論了預測模型的兩類核心演算法、預測模型的構建、懲罰線性回歸和集成方法的具體應用和實現。
本書主要針對想提高機器學習技能的Python 開發人員,幫助他們解決某一特定的項
目或是提升相關的技能。
作者簡介:
Michael Bowles 在矽谷黑客道場教授機器學習,提供機器學習項目咨詢,同時參與了多家創業公司,涉及的領域包括生物信息學、金融高頻交易等。他在麻省理工學院獲得助理教授教職後,創建並運營了兩家矽谷創業公司,這兩家公司都已成功上市。他在黑客道場的課程往往聽者雲集並且好評頗多。
❽ 《python簡明教程中文》pdf下載在線閱讀全文,求百度網盤雲資源
《python簡明教程中文》網路網盤pdf最新全集下載:
鏈接: https://pan..com/s/1XFNlyTxkH8wW404BJoJCwg
簡介:Python語言可能是第一種即簡單又功能強大的編程語言。它不僅適合於初學者,也適合於專業人員使用,更加重要的是,用Python編程是一種愉快的事。本身將幫助你學習這個奇妙的語言,並且向你展示如何即快捷又方便地完成任務一一真正意義上「為編程問題提供的完美解決方案!」
❾ 《Python學習手冊(第4版)》pdf下載在線閱讀,求百度網盤雲資源
《Python學習手冊(第4版)》[美]MarkLutz電子書網盤下載免費在線閱讀
鏈接:https://pan..com/s/1RVzDVUPTKVTmcGfpoMxJrw
提取碼:syy8
書名:Python學習手冊(第4版)
作者名:[美] Mark Lutz
豆瓣評分:7.9
出版社:機械工業出版社
出版年份:2011-4
頁數:889
內容介紹:
Google和YouTube由於Python的高可適應性、易於維護以及適合於快速開發而採用它。如果你想要編寫高質量、高效的並且易於與其他語言和工具集成的代碼,《Python學習手冊:第4 版》將幫助你使用Python快速實現這一點,不管你是編程新手還是Python初學者。本書是易於掌握和自學的教程,根據作者Python專家Mark Lutz的著名培訓課程編寫而成。
作者介紹:
Mark 是O'Reilly出版的《Programming Python》和《Python Pocket Reference》的作者,這兩本書於2009年都已經出版了第3版。Mark自1992年開始接觸Python,1995年開始撰寫有關Python的書籍,從1997年開始教授Python課程。截止到2009年,他已經開辦了225個Python短期培訓課程,教授了大約3500名學習者,銷售了大約25萬冊有關Python的書籍。許多書被翻譯成十多種語言。
❿ 《Python基礎教程(第2版)》pdf下載在線閱讀,求百度網盤雲資源
《Python基礎教程(第2版)》MagnusLieHetland電子書網盤下載免費在線閱讀
鏈接: https://pan..com/s/135Rn6OL8EsybwtjhsNu5Zw
書名:Python基礎教程(第2版)
作者名:MagnusLieHetland
豆瓣評分:8.0
出版社:人民郵電出版社
出版年份:2010-7
頁數:471
內容介紹:
本書是經典教程的全新改版,作者根據Python 3.0版本的種種變化,全面改寫了書中內容,做到既能「瞻前」也能「顧後」。本書層次鮮明、結構嚴謹、內容翔實,特別是在最後幾章,作者將前面講述的內容應用到了10個引人入勝的項目中,並以模板的形式介紹了項目的開發過程。本書既適合初學者夯實基礎,又能幫助Python程序員提升技能,即使是 Python方面的技術專家,也能從書里找到令你耳目一新的東西。
作者介紹:
Magnus Lie Hetland是挪威科技大學副教授,教授演算法。喜歡鑽研新的編程語言,是Python語言的堅定支持者。他寫過很多Python方面的書和在線教程,比如深受大家歡迎的網上教程Instant Python。