python相關分析
① 怎麼用python數據分析分析
1、首先打開python並新建文檔。
2、其次輸入相關的代碼信息。
3、最後點擊運行即可數據分析分析
② Python數據分析 | 數據描述性分析
首先導入一些必要的數據處理包和可視化的包,讀文檔數據並通過前幾行查看數據欄位。
對於我的數據來說,由於數據量比較大,因此對於缺失值可以直接做刪除處理。
得到最終的數據,並提取需要的列作為特徵。
對類別數據進行統計:
類別型欄位包括location、cpc_class、pa_country、pa_state、pa_city、assignee六個欄位,其中:
單變數統計描述是數據分析中最簡單的形式,其中被分析的數據只包含一個變數,不處理原因或關系。單變數分析的主要目的是通過對數據的統計描述了解當前數據的基本情況,並找出數據的分布模型。
單變數數據統計描述從集中趨勢上看,指標有:均值,中位數,分位數,眾數;從離散程度上看,指標有:極差、四分位數、方差、標准差、協方差、變異系數,從分布上看,有偏度,峰度等。需要考慮的還有極大值,極小值(數值型變數)和頻數,構成比(分類或等級變數)。
對於數值型數據,首先希望了解一下數據取值范圍的分布,因此可以用統計圖直觀展示數據分布特徵,如:柱狀圖、正方圖、箱式圖、頻率多邊形和餅狀圖。
按照發布的時間先後作為橫坐標,數值范圍的分布情況如圖所示.
還可以根據最終分類的結果查看這些數值數據在不同類別上的分布統計。
箱線圖可以更直觀的查看異常值的分布情況。
異常值指數據中的離群點,此處定義超出上下四分位數差值的1.5倍的范圍為異常值,查看異常值的位置。
參考:
python數據分析之數據分布 - yancheng111 - 博客園
python數據統計分析 -
科爾莫戈羅夫檢驗(Kolmogorov-Smirnov test),檢驗樣本數據是否服從某一分布,僅適用於連續分布的檢驗。下例中用它檢驗正態分布。
在使用k-s檢驗該數據是否服從正態分布,提出假設:x從正態分布。最終返回的結果,p-value=0.9260909172362317,比指定的顯著水平(一般為5%)大,則我們不能拒絕假設:x服從正態分布。這並不是說x服從正態分布一定是正確的,而是說沒有充分的證據證明x不服從正態分布。因此我們的假設被接受,認為x服從正態分布。如果p-value小於我們指定的顯著性水平,則我們可以肯定的拒絕提出的假設,認為x肯定不服從正態分布,這個拒絕是絕對正確的。
衡量兩個變數的相關性至少有以下三個方法:
皮爾森相關系數(Pearson correlation coefficient) 是反應倆變數之間線性相關程度的統計量,用它來分析正態分布的兩個連續型變數之間的相關性。常用於分析自變數之間,以及自變數和因變數之間的相關性。
返回結果的第一個值為相關系數表示線性相關程度,其取值范圍在[-1,1],絕對值越接近1,說明兩個變數的相關性越強,絕對值越接近0說明兩個變數的相關性越差。當兩個變數完全不相關時相關系數為0。第二個值為p-value,統計學上,一般當p-value<0.05時,可以認為兩變數存在相關性。
斯皮爾曼等級相關系數(Spearman』s correlation coefficient for ranked data ) ,它主要用於評價順序變數間的線性相關關系,在計算過程中,只考慮變數值的順序(rank, 秩或稱等級),而不考慮變數值的大小。常用於計算類型變數的相關性。
返回結果的第一個值為相關系數表示線性相關程度,本例中correlation趨近於1表示正相關。第二個值為p-value,p-value越小,表示相關程度越顯著。
kendall :
也可以直接對整體數據進行相關性分析,一般來說,相關系數取值和相關強度的關系是:0.8-1.0 極強 0.6-0.8 強 0.4-0.6 中等 0.2-0.4 弱 0.0-0.2 極弱。
③ 如何利用python進行數據的相關性分析
1. 運算優先順序
括弧、指數、乘、除、加、減
2
如果你使用了非 ASCII 字元而且碰到了編碼錯誤,記得在最頂端加一行 # -- coding: utf-8 --
3. Python格式化字元
使用更多的格式化字元。例如 %r 就是是非常有用的一個,它的含義是「不管什麼都列印出來」。
%s -- string
%% 百分號標記 #就是輸出一個%
%c 字元及其ASCII碼
%s 字元串
%d 有符號整數(十進制)
%u 無符號整數(十進制)
%o 無符號整數(八進制)
%x 無符號整數(十六進制)
%X 無符號整數(十六進制大寫字元)
%e 浮點數字(科學計數法)
%E 浮點數字(科學計數法,用E代替e)
%f 浮點數字(用小數點符號)
%g 浮點數字(根據值的大小採用%e或%f)
%G 浮點數字(類似於%g)
%p 指針(用十六進制列印值的內存地址)
%n 存儲輸出字元的數量放進參數列表的下一個變數中
%c 轉換成字元(ASCII 碼值,或者長度為一的字元串)
%r 優先用repr()函數進行字元串轉換(Python2.0新增)
%s 優先用str()函數進行字元串轉換
%d / %i 轉成有符號十進制數
%u 轉成無符號十進制數
%o 轉成無符號八進制數
%x / %X (Unsigned)轉成無符號十六進制數(x / X 代表轉換後的十六進制字元的大小寫)
%e / %E 轉成科學計數法(e / E控制輸出e / E)
%f / %F 轉成浮點數(小數部分自然截斷)
%g / %G : %e和%f / %E和%F 的簡寫
%% 輸出%
輔助符號 說明
* 定義寬度或者小數點精度
- 用做左對齊
+ 在正數前面顯示加號(+)
<sp> 在正數前面顯示空格
# 在八進制數前面顯示零(0),在十六進制前面顯示「0x」或者「0X」(取決於用的是「x」還是「X」)
0 顯示的數字前面填充「0」而不是默認的空格
m.n m 是顯示的最小總寬度,n 是小數點後的位數(如果可用的話)
④ python數據分析是干什麼的
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,將它們加以匯總和理解並消化,以求最大化地開發數據的功能,發揮數據的作用。數據分析是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。
數據分析的數學基礎在20世紀早期就已確立,但直到計算機的出現才使得實際操作成為可能,並使得數據分析得以推廣。數據分析是數學與計算機科學相結合的產物。
Python數據分析可以做的事情有很多,具體如下:
第一、檢查數據表
Python中使用shape函數來查看數據表的維度,也就是行數和列數。你可以使用info函數查看數據表的整體信息,使用dtypes函數來返回數據格式。Lsnull是Python中檢查空置的函數,你可以對整個數據進行檢查,也可以單獨對某一列進行空置檢查,返回的結果是邏輯值,包括空置返回True,不包含則返回False。使用unique函數查看唯一值,使用Values函數用來查看數據表中的數值。
第二,數據表清洗
Python中處理空值的方法比較靈活,可以使用Dropna函數用來刪除數據表中包括空值的數據,也可以使用fillna函數對空值進行填充。Python中dtype是查看數據格式的函數,與之對應的是asstype函數,用來更改數據格式,Rename是更改名稱的函數,drop_plicate函數函數重復值,replace函數實現數據轉換。
第三,數據預處理
數據預處理是對清洗完的數據進行整理以便後期統計和分析工作,主要包括數據表的合並、排序、數值分列、數據分組以及標記等工作。在Python中可以使用merge函數對兩個數據表進行合並,合並的方式為inner,此外還有left、right和outer方式。使用ort_values函數和sort_index函數完成排序,使用where函數完成數據分組,使用split函數實現分列。
第四,數據提取
主要是使用三個函數:loc、iloc和ix,其中loc函數按標准值進行提取,iloc按位置進行提取,ix可以同時按標簽和位置進行提取。除了按標簽和位置提取數據意外,還可以按照具體的條件進行提取。
第五,數據篩選匯總
Python中使用loc函數配合篩選條件來完成篩選功能,配合sum和count函數還能實現Excel中sumif和countif函數的功能。Python中使用的主要函數是groupby和pivot_table。
⑤ python數據統計分析
1. 常用函數庫
scipy包中的stats模塊和statsmodels包是python常用的數據分析工具,scipy.stats以前有一個models子模塊,後來被移除了。這個模塊被重寫並成為了現在獨立的statsmodels包。
scipy的stats包含一些比較基本的工具,比如:t檢驗,正態性檢驗,卡方檢驗之類,statsmodels提供了更為系統的統計模型,包括線性模型,時序分析,還包含數據集,做圖工具等等。
2. 小樣本數據的正態性檢驗
(1) 用途
夏皮羅維爾克檢驗法 (Shapiro-Wilk) 用於檢驗參數提供的一組小樣本數據線是否符合正態分布,統計量越大則表示數據越符合正態分布,但是在非正態分布的小樣本數據中也經常會出現較大的W值。需要查表來估計其概率。由於原假設是其符合正態分布,所以當P值小於指定顯著水平時表示其不符合正態分布。
正態性檢驗是數據分析的第一步,數據是否符合正態性決定了後續使用不同的分析和預測方法,當數據不符合正態性分布時,我們可以通過不同的轉換方法把非正太態數據轉換成正態分布後再使用相應的統計方法進行下一步操作。
(2) 示例
(3) 結果分析
返回結果 p-value=0.029035290703177452,比指定的顯著水平(一般為5%)小,則拒絕假設:x不服從正態分布。
3. 檢驗樣本是否服務某一分布
(1) 用途
科爾莫戈羅夫檢驗(Kolmogorov-Smirnov test),檢驗樣本數據是否服從某一分布,僅適用於連續分布的檢驗。下例中用它檢驗正態分布。
(2) 示例
(3) 結果分析
生成300個服從N(0,1)標准正態分布的隨機數,在使用k-s檢驗該數據是否服從正態分布,提出假設:x從正態分布。最終返回的結果,p-value=0.9260909172362317,比指定的顯著水平(一般為5%)大,則我們不能拒絕假設:x服從正態分布。這並不是說x服從正態分布一定是正確的,而是說沒有充分的證據證明x不服從正態分布。因此我們的假設被接受,認為x服從正態分布。如果p-value小於我們指定的顯著性水平,則我們可以肯定地拒絕提出的假設,認為x肯定不服從正態分布,這個拒絕是絕對正確的。
4.方差齊性檢驗
(1) 用途
方差反映了一組數據與其平均值的偏離程度,方差齊性檢驗用以檢驗兩組或多組數據與其平均值偏離程度是否存在差異,也是很多檢驗和演算法的先決條件。
(2) 示例
(3) 結果分析
返回結果 p-value=0.19337536323599344, 比指定的顯著水平(假設為5%)大,認為兩組數據具有方差齊性。
5. 圖形描述相關性
(1) 用途
最常用的兩變數相關性分析,是用作圖描述相關性,圖的橫軸是一個變數,縱軸是另一變數,畫散點圖,從圖中可以直觀地看到相關性的方向和強弱,線性正相關一般形成由左下到右上的圖形;負面相關則是從左上到右下的圖形,還有一些非線性相關也能從圖中觀察到。
(2) 示例
(3) 結果分析
從圖中可以看到明顯的正相關趨勢。
6. 正態資料的相關分析
(1) 用途
皮爾森相關系數(Pearson correlation coefficient)是反應兩變數之間線性相關程度的統計量,用它來分析正態分布的兩個連續型變數之間的相關性。常用於分析自變數之間,以及自變數和因變數之間的相關性。
(2) 示例
(3) 結果分析
返回結果的第一個值為相關系數表示線性相關程度,其取值范圍在[-1,1],絕對值越接近1,說明兩個變數的相關性越強,絕對值越接近0說明兩個變數的相關性越差。當兩個變數完全不相關時相關系數為0。第二個值為p-value,統計學上,一般當p-value<0.05時,可以認為兩變數存在相關性。
7. 非正態資料的相關分析
(1) 用途
斯皮爾曼等級相關系數(Spearman』s correlation coefficient for ranked data ),它主要用於評價順序變數間的線性相關關系,在計算過程中,只考慮變數值的順序(rank, 值或稱等級),而不考慮變數值的大小。常用於計算類型變數的相關性。
(2) 示例
(3) 結果分析
返回結果的第一個值為相關系數表示線性相關程度,本例中correlation趨近於1表示正相關。第二個值為p-value,p-value越小,表示相關程度越顯著。
8. 單樣本T檢驗
(1) 用途
單樣本T檢驗,用於檢驗數據是否來自一致均值的總體,T檢驗主要是以均值為核心的檢驗。注意以下幾種T檢驗都是雙側T檢驗。
(2) 示例
(3) 結果分析
本例中生成了2列100行的數組,ttest_1samp的第二個參數是分別對兩列估計的均值,p-value返回結果,第一列1.47820719e-06比指定的顯著水平(一般為5%)小,認為差異顯著,拒絕假設;第二列2.83088106e-01大於指定顯著水平,不能拒絕假設:服從正態分布。
9. 兩獨立樣本T檢驗
(1) 用途
由於比較兩組數據是否來自於同一正態分布的總體。注意:如果要比較的兩組數據不滿足方差齊性, 需要在ttest_ind()函數中添加參數equal_var = False。
(2) 示例
(3) 結果分析
返回結果的第一個值為統計量,第二個值為p-value,pvalue=0.19313343989106416,比指定的顯著水平(一般為5%)大,不能拒絕假設,兩組數據來自於同一總結,兩組數據之間無差異。
10. 配對樣本T檢驗
(1) 用途
配對樣本T檢驗可視為單樣本T檢驗的擴展,檢驗的對象由一群來自正態分布獨立樣本更改為二群配對樣本觀測值之差。它常用於比較同一受試對象處理的前後差異,或者按照某一條件進行兩兩配對分別給與不同處理的受試對象之間是否存在差異。
(2) 示例
(3) 結果分析
返回結果的第一個值為統計量,第二個值為p-value,pvalue=0.80964043445811551,比指定的顯著水平(一般為5%)大,不能拒絕假設。
11. 單因素方差分析
(1) 用途
方差分析(Analysis of Variance,簡稱ANOVA),又稱F檢驗,用於兩個及兩個以上樣本均數差別的顯著性檢驗。方差分析主要是考慮各組之間的平均數差別。
單因素方差分析(One-wayAnova),是檢驗由單一因素影響的多組樣本某因變數的均值是否有顯著差異。
當因變數Y是數值型,自變數X是分類值,通常的做法是按X的類別把實例成分幾組,分析Y值在X的不同分組中是否存在差異。
(2) 示例
(3) 結果分析
返回結果的第一個值為統計量,它由組間差異除以組間差異得到,上例中組間差異很大,第二個返回值p-value=6.2231520821576832e-19小於邊界值(一般為0.05),拒絕原假設, 即認為以上三組數據存在統計學差異,並不能判斷是哪兩組之間存在差異 。只有兩組數據時,效果同 stats.levene 一樣。
12. 多因素方差分析
(1) 用途
當有兩個或者兩個以上自變數對因變數產生影響時,可以用多因素方差分析的方法來進行分析。它不僅要考慮每個因素的主效應,還要考慮因素之間的交互效應。
(2) 示例
(3) 結果分析
上述程序定義了公式,公式中,"~"用於隔離因變數和自變數,」+「用於分隔各個自變數, ":"表示兩個自變數交互影響。從返回結果的P值可以看出,X1和X2的值組間差異不大,而組合後的T:G的組間有明顯差異。
13. 卡方檢驗
(1) 用途
上面介紹的T檢驗是參數檢驗,卡方檢驗是一種非參數檢驗方法。相對來說,非參數檢驗對數據分布的要求比較寬松,並且也不要求太大數據量。卡方檢驗是一種對計數資料的假設檢驗方法,主要是比較理論頻數和實際頻數的吻合程度。常用於特徵選擇,比如,檢驗男人和女人在是否患有高血壓上有無區別,如果有區別,則說明性別與是否患有高血壓有關,在後續分析時就需要把性別這個分類變數放入模型訓練。
基本數據有R行C列, 故通稱RC列聯表(contingency table), 簡稱RC表,它是觀測數據按兩個或更多屬性(定性變數)分類時所列出的頻數表。
(2) 示例
(3) 結果分析
卡方檢驗函數的參數是列聯表中的頻數,返回結果第一個值為統計量值,第二個結果為p-value值,p-value=0.54543425102570975,比指定的顯著水平(一般5%)大,不能拒絕原假設,即相關性不顯著。第三個結果是自由度,第四個結果的數組是列聯表的期望值分布。
14. 單變數統計分析
(1) 用途
單變數統計描述是數據分析中最簡單的形式,其中被分析的數據只包含一個變數,不處理原因或關系。單變數分析的主要目的是通過對數據的統計描述了解當前數據的基本情況,並找出數據的分布模型。
單變數數據統計描述從集中趨勢上看,指標有:均值,中位數,分位數,眾數;從離散程度上看,指標有:極差、四分位數、方差、標准差、協方差、變異系數,從分布上看,有偏度,峰度等。需要考慮的還有極大值,極小值(數值型變數)和頻數,構成比(分類或等級變數)。
此外,還可以用統計圖直觀展示數據分布特徵,如:柱狀圖、正方圖、箱式圖、頻率多邊形和餅狀圖。
15. 多元線性回歸
(1) 用途
多元線性回歸模型(multivariable linear regression model ),因變數Y(計量資料)往往受到多個變數X的影響,多元線性回歸模型用於計算各個自變數對因變數的影響程度,可以認為是對多維空間中的點做線性擬合。
(2) 示例
(3) 結果分析
直接通過返回結果中各變數的P值與0.05比較,來判定對應的解釋變數的顯著性,P<0.05則認為自變數具有統計學意義,從上例中可以看到收入INCOME最有顯著性。
16. 邏輯回歸
(1) 用途
當因變數Y為2分類變數(或多分類變數時)可以用相應的logistic回歸分析各個自變數對因變數的影響程度。
(2) 示例
(3) 結果分析
直接通過返回結果中各變數的P值與0.05比較,來判定對應的解釋變數的顯著性,P<0.05則認為自變數具有統計學意義。
⑥ python怎麼做數據分析
無論是自學還是怎麼的,記住自己學習Python的目標——從事數據科學,而非Python軟體開發。所以,Python入門的方向,應該是掌握Python所有的相關概念、基礎知識,為後續Python庫的學習打基礎。
需要掌握的數據分析基本庫有
Numpy
Numpy是Python科學計算的基礎包。
Pandas
它提供了復雜精細的索引功能,能更加便捷地完成重塑、切片和切塊、聚合以及選取數據子集等操作。因為數據操作、准備、清洗是數據分析最重要的技能,所以Pandas也是學習的重點。
Matplotlib
Matplotlib是最流行的用於繪制圖表和其它二維數據可視化的Python庫,它非常適合創建出版物上用的圖表。
Scikit-learn
Scikit-learn是Python的通用機器學習工具包。它的子模塊包括分類、回歸、聚類、降維、選型、預處理,對於Python成為高效數據科學編程語言起到了關鍵作用。
只需要學習Python入門的知識以及4個數據分析相關的庫,就能上手使用Python進行數據分析了。另外如果需要獲取外部網站數據的話,還需要學習爬蟲。
⑦ python相關性分析如何生成兩個相關性最強的兩門
方法/步驟
第一步我們首先需要知道相關性主要有兩個方向,一個是正方向一個是負方向,相關性系數是衡量兩個變數之間影響程度,如下圖所示:
⑧ 如何用python進行相關性分析
用python進行相關性分析應該主要根據數據的內容進行分析,如果是帶標注的數據可以通過模型訓練的方式來獲取進行分析,找出對目標結果有最大影響的因素。如果沒有標注的話,可以用python構建網路知識圖譜手動分析,或者自己構建數據表格,人為觀察數據分布圖找到其中規律。一般來說相關性分析,主要依靠人為的觀察,並用數據和模型來輔助計算,從而獲得相對准確的結果。
⑨ 如何用python進行數據分析
1、Python數據分析流程及學習路徑
數據分析的流程概括起來主要是:讀寫、處理計算、分析建模和可視化四個部分。在不同的步驟中會用到不同的Python工具。每一步的主題也包含眾多內容。
根據每個部分需要用到的工具,Python數據分析的學習路徑如下:
相關推薦:《Python入門教程》
2、利用Python讀寫數據
Python讀寫數據,主要包括以下內容:
我們以一小段代碼來看:
可見,僅需簡短的兩三行代碼即可實現Python讀入EXCEL文件。
3、利用Python處理和計算數據
在第一步和第二步,我們主要使用的是Python的工具庫NumPy和pandas。其中,NumPy主要用於矢量化的科學計算,pandas主要用於表型數據處理。
4、利用Python分析建模
在分析和建模方面,主要包括Statsmdels和Scikit-learn兩個庫。
Statsmodels允許用戶瀏覽數據,估計統計模型和執行統計測試。可以為不同類型的數據和每個估算器提供廣泛的描述性統計,統計測試,繪圖函數和結果統計列表。
Scikit-leran則是著名的機器學習庫,可以迅速使用各類機器學習演算法。
5、利用Python數據可視化
數據可視化是數據工作中的一項重要內容,它可以輔助分析也可以展示結果。