當前位置:首頁 » 編程語言 » c語言密碼演算法

c語言密碼演算法

發布時間: 2023-02-05 01:58:39

c語言加密演算法

#include<stdio.h>

intconstN=10;

//將方陣a[N][N]第row行循環左移m位
voidRowLeftn(chara[][N],intn,introw,intm){
inti,j,t;
if(row<0||row>n-1)return;
for(i=0;i<m;++i){
t=a[row][0];
for(j=0;j<n-1;++j)
a[row][j]=a[row][j+1];
a[row][n-1]=t;
}
}

//將方陣a[N][N]第col列循環上移m位
voidColUpn(chara[][N],intn,intcol,intm){
inti,j,t;
if(col<0||col>n-1)return;
for(i=0;i<m;++i){
t=a[0][col];
for(j=0;j<n-1;++j)
a[j][col]=a[j+1][col];
a[n-1][col]=t;
}
}

intmain(){
chartxt[N][N];
inta[N],b[N],i,j,n;
while(scanf("%d",&n)==1&&n>0){
fflush(stdin);
for(i=0;i<n;++i){
for(j=0;j<n;++j)
scanf("%c",&txt[i][j]);
}
for(i=0;i<n;++i){
for(j=0;j<n;++j)
printf("%c",txt[i][j]);
printf(" ");
}
for(i=0;i<n;++i)scanf("%d",&a[i]);
for(i=0;i<n;++i)scanf("%d",&b[i]);
for(i=0;i<n;++i)RowLeftn(txt,n,i,a[i]);
for(i=0;i<n;++i)ColUpn(txt,n,i,b[i]);
for(i=0;i<n;++i){
for(j=0;j<n;++j)
printf("%c",txt[i][j]);
}
printf(" ");
}
return0;
}

㈡ C語言加密演算法(簡單)

MD5是HASH演算法,他不能用來解密的,他主要是用來校驗信息的完整型,也就是我們常說的數值簽名,你可以去RFC文檔上收索,上邊有他具體的演算法,代碼也是封裝好了的,可以去研究研究

㈢ 用C語言:根據給定的演算法,判斷輸入的密碼是否正確

#include<stdio.h>
void main()
{
int n,password=123456,i=1;
while(1)
{
printf("輸入密碼:");
scanf("%d",&n);
if(n==password)
printf("Welcome to use the software\n");
else
{
if(i<3)
printf("剩餘的可輸入密碼的次數為:%d\n",3-i);
else
printf("Password error ! You can not use the software\n");
i++;

}
if(i>=4||n==password)break;
}
}
這個是不需要用return的,簡明一點,初學的應該會

㈣ c語言加密演算法

看你催就倉促寫了個,自我感覺寫的不是很好,但是能用了。數據只能是大寫字母組成的字元串。
加密的時候,輸入Y,然後輸入要加密的文本(大寫字母)
解密的時候,輸入N,然後輸入一個整數n表示密文的個數,然後n個整數表示加密時候得到的密文。
/*RSA algorithm */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MM 7081
#define KK 1789
#define PHIM 6912
#define PP 85
typedef char strtype[10000];
int len;
long nume[10000];
int change[126];
char antichange[37];

void initialize()
{ int i;
char c;
for (i = 11, c = 'A'; c <= 'Z'; c ++, i ++)
{ change[c] = i;
antichange[i] = c;
}
}
void changetonum(strtype str)
{ int l = strlen(str), i;
len = 0;
memset(nume, 0, sizeof(nume));
for (i = 0; i < l; i ++)
{ nume[len] = nume[len] * 100 + change[str[i]];
if (i % 2 == 1) len ++;
}
if (i % 2 != 0) len ++;
}
long binamod(long numb, long k)
{ if (k == 0) return 1;
long curr = binamod (numb, k / 2);
if (k % 2 == 0)
return curr * curr % MM;
else return (curr * curr) % MM * numb % MM;
}
long encode(long numb)
{ return binamod(numb, KK);
}
long decode(long numb)
{ return binamod(numb, PP);
}
main()
{ strtype str;
int i, a1, a2;
long curr;
initialize();
puts("Input 'Y' if encoding, otherwise input 'N':");
gets(str);
if (str[0] == 'Y')
{ gets(str);
changetonum(str);
printf("encoded: ");
for (i = 0; i < len; i ++)
{ if (i) putchar('-');
printf(" %ld ", encode(nume[i]));
}
putchar('\n');
}
else
{ scanf("%d", &len);
for (i = 0; i < len; i ++)
{ scanf("%ld", &curr);
curr = decode(curr);
a1 = curr / 100;
a2 = curr % 100;
printf("decoded: ");
if (a1 != 0) putchar(antichange[a1]);
if (a2 != 0) putchar(antichange[a2]);
}
putchar('\n');
}
putchar('\n');
system("PAUSE");
return 0;
}
測試:
輸入:
Y
FERMAT
輸出:
encoded: 5192 - 2604 - 4222
輸入
N
3 5192 2604 4222
輸出
decoded: FERMAT

㈤ 如何用C語言實現RSA演算法

RSA演算法它是第一個既能用於數據加密也能用於數字簽名的演算法。它易於理解和操作,也很流行。演算法的名字以發明者的名字
命名:Ron Rivest, Adi Shamir 和Leonard
Adleman。但RSA的安全性一直未能得到理論上的證明。它經歷了各種攻擊,至今未被完全攻破。

一、RSA演算法 :

首先, 找出三個數, p, q, r,
其中 p, q 是兩個相異的質數, r 是與 (p-1)(q-1) 互質的數
p, q, r 這三個數便是 private key

接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1)
這個 m 一定存在, 因為 r 與 (p-1)(q-1) 互質, 用輾轉相除法就可以得到了
再來, 計算 n = pq
m, n 這兩個數便是 public key

編碼過程是, 若資料為 a, 將其看成是一個大整數, 假設 a < n
如果 a >= n 的話, 就將 a 表成 s 進位 (s <= n, 通常取 s = 2^t),
則每一位數均小於 n, 然後分段編碼
接下來, 計算 b == a^m mod n, (0 <= b < n),
b 就是編碼後的資料

解碼的過程是, 計算 c == b^r mod pq (0 <= c < pq),
於是乎, 解碼完畢 等會會證明 c 和 a 其實是相等的 :)

如果第三者進行竊聽時, 他會得到幾個數: m, n(=pq), b
他如果要解碼的話, 必須想辦法得到 r
所以, 他必須先對 n 作質因數分解
要防止他分解, 最有效的方法是找兩個非常的大質數 p, q,
使第三者作因數分解時發生困難
<定理>
若 p, q 是相異質數, rm == 1 mod (p-1)(q-1),
a 是任意一個正整數, b == a^m mod pq, c == b^r mod pq,
則 c == a mod pq

證明的過程, 會用到費馬小定理, 敘述如下:
m 是任一質數, n 是任一整數, 則 n^m == n mod m
(換另一句話說, 如果 n 和 m 互質, 則 n^(m-1) == 1 mod m)
運用一些基本的群論的知識, 就可以很容易地證出費馬小定理的

<證明>
因為 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整數
因為在 molo 中是 preserve 乘法的
(x == y mod z and u == v mod z => xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq

1. 如果 a 不是 p 的倍數, 也不是 q 的倍數時,
則 a^(p-1) == 1 mod p (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod p
a^(q-1) == 1 mod q (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod q
所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1
即 a^(k(p-1)(q-1)) == 1 mod pq
=> c == a^(k(p-1)(q-1)+1) == a mod pq

2. 如果 a 是 p 的倍數, 但不是 q 的倍數時,
則 a^(q-1) == 1 mod q (費馬小定理)
=> a^(k(p-1)(q-1)) == 1 mod q
=> c == a^(k(p-1)(q-1)+1) == a mod q
=> q | c - a
因 p | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod p
=> p | c - a
所以, pq | c - a => c == a mod pq

3. 如果 a 是 q 的倍數, 但不是 p 的倍數時, 證明同上

4. 如果 a 同時是 p 和 q 的倍數時,
則 pq | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod pq
=> pq | c - a
=> c == a mod pq
Q.E.D.

這個定理說明 a 經過編碼為 b 再經過解碼為 c 時, a == c mod n (n = pq)
但我們在做編碼解碼時, 限制 0 <= a < n, 0 <= c < n,
所以這就是說 a 等於 c, 所以這個過程確實能做到編碼解碼的功能

二、RSA 的安全性

RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因為沒有證明破解
RSA就一定需要作大數分解。假設存在一種無須分解大數的演算法,那它肯定可以修改成為大數分解演算法。目前, RSA
的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯然的攻擊方法。現在,人們已能分解多個十進制位的大素數。因此,模數n
必須選大一些,因具體適用情況而定。

三、RSA的速度

由於進行的都是大數計算,使得RSA最快的情況也比DES慢上倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。

四、RSA的選擇密文攻擊

RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝( Blind),讓擁有私鑰的實體簽署。然後,經過計算就可得到它所想要的信息。實際上,攻擊利用的都是同一個弱點,即存在這樣一個事實:乘冪保留了輸入的乘法結構:

( XM )^d = X^d *M^d mod n

前面已經提到,這個固有的問題來自於公鑰密碼系統的最有用的特徵--每個人都能使用公鑰。但從演算法上無法解決這一問題,主要措施有兩條:一條是採用好的公
鑰協議,保證工作過程中實體不對其他實體任意產生的信息解密,不對自己一無所知的信息簽名;另一條是決不對陌生人送來的隨機文檔簽名,簽名時首先使用
One-Way HashFunction 對文檔作HASH處理,或同時使用不同的簽名演算法。在中提到了幾種不同類型的攻擊方法。

五、RSA的公共模數攻擊

若系統中共有一個模數,只是不同的人擁有不同的e和d,系統將是危險的。最普遍的情況是同一信息用不同的公鑰加密,這些公鑰共模而且互質,那末該信息無需私鑰就可得到恢復。設P為信息明文,兩個加密密鑰為e1和e2,公共模數是n,則:

C1 = P^e1 mod n

C2 = P^e2 mod n

密碼分析者知道n、e1、e2、C1和C2,就能得到P。

因為e1和e2互質,故用Euclidean演算法能找到r和s,滿足:

r * e1 + s * e2 = 1

假設r為負數,需再用Euclidean演算法計算C1^(-1),則

( C1^(-1) )^(-r) * C2^s = P mod n

另外,還有其它幾種利用公共模數攻擊的方法。總之,如果知道給定模數的一對e和d,一是有利於攻擊者分解模數,一是有利於攻擊者計算出其它成對的e』和d』,而無需分解模數。解決辦法只有一個,那就是不要共享模數n。

RSA的小指數攻擊。 有一種提高 RSA速度的建議是使公鑰e取較小的值,這樣會使加密變得易於實現,速度有
所提高。但這樣作是不安全的,對付辦法就是e和d都取較大的值。

RSA演算法是
第一個能同時用於加密和數字簽名的演算法,也易於理解和操作。RSA是被研究得最廣泛的公鑰演算法,從提出到現在已近二十年,經歷了各種攻擊的考驗,逐漸為人
們接受,普遍認為是目前最優秀的公鑰方案之一。RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA
的重大缺陷是無法從理論上把握它的保密性能
如何,而且密碼學界多數人士傾向於因子分解不是NPC問題。
RSA的缺點主要有:A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。B)分組長度太大,為保證安全性,n 至少也要 600
bits
以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。目
前,SET( Secure Electronic Transaction )協議中要求CA採用比特長的密鑰,其他實體使用比特的密鑰。

C語言實現

#include <stdio.h>
int candp(int a,int b,int c)
{ int r=1;
b=b+1;
while(b!=1)
{
r=r*a;
r=r%c;
b--;
}
printf("%d\n",r);
return r;
}
void main()
{
int p,q,e,d,m,n,t,c,r;
char s;
printf("please input the p,q: ");
scanf("%d%d",&p,&q);
n=p*q;
printf("the n is %3d\n",n);
t=(p-1)*(q-1);
printf("the t is %3d\n",t);
printf("please input the e: ");
scanf("%d",&e);
if(e<1||e>t)
{
printf("e is error,please input again: ");
scanf("%d",&e);
}
d=1;
while(((e*d)%t)!=1) d++;
printf("then caculate out that the d is %d\n",d);
printf("the cipher please input 1\n");
printf("the plain please input 2\n");
scanf("%d",&r);
switch(r)
{
case 1: printf("input the m: "); /*輸入要加密的明文數字*/
scanf("%d",&m);
c=candp(m,e,n);
printf("the cipher is %d\n",c);break;
case 2: printf("input the c: "); /*輸入要解密的密文數字*/
scanf("%d",&c);
m=candp(c,d,n);
printf("the cipher is %d\n",m);break;
}
getch();
}

㈥ 凱撒密碼的演算法c語言的怎麼實現啊

凱撒密碼是一種非常古老的加密方法,相傳當年凱撒大地行軍打仗時為了保證自己的命令不被敵軍知道,就使用這種特殊的方法進行通信,以確保信息傳遞的安全。他的原理很簡單,說到底就是字母於字母之間的替換。下面讓我們看一個簡單的例子:「」用凱撒密碼法加密後字元串變為「edlgx」,它的原理是什麼呢?把「」中的每一個字母按字母表順序向後移3位,所得的結果就是剛才我們所看到的密文。

#include <stdio.h>
main()
{
char M[100];
char C[100];
int K=3,i;
printf("請輸入明文M(注意不要輸入空白串)\n");
gets(M);

for(i=0;M[i]!='\0';i++)
C[i]=(M[i]-'a'+K)%26+'a';
C[i]='\0';

printf("結果是:\n%s\n",C);
}

㈦ c語言加密解密演算法

這里使用的是按位加密,按ASCII碼進行加密的演算法自己寫個,很容易的。
#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#include<string.h>
void
dofile(char
*in_fname,char
*pwd,char
*out_fname);/*對文件進行加密的具體函數*/
void
usage(char
*name);
void
main(int
argc,char
*argv[])/*定義main()函數的命令行參數*/
{
char
in_fname[30];/*用戶輸入的要加密的文件名*/
char
out_fname[30];
char
pwd[10];/*用來保存密碼*/
if(argc!=4)
{/*容錯處理*/
usage(argv[0]);
printf("\nIn-fname:\n");
gets(in_fname);/*得到要加密的文件名*/
while(*in_fname==NULL)
{
printf("\nIn-fname:\n");
gets(in_fname);
}
printf("Password
6-8:\n");
gets(pwd);/*得到密碼*/
while(*pwd==NULL
||
strlen(pwd)>8
||
strlen(pwd)<6)
{
printf("Password
6-8:\n");
gets(pwd);
}
printf("Out-file:\n");
gets(out_fname);/*得到加密後你要的文件名*/
while(*in_fname==NULL)
{
printf("Out-file:\n");
gets(out_fname);
}
while(!strcmp(in_fname,out_fname))
{
printf("文件名不能和源文件相同\n");
printf("Out-file:\n");
gets(out_fname);
}
dofile(in_fname,pwd,out_fname);
printf("加密成功,解密請再次運行程序\n");
}
else
{/*如果命令行參數正確,便直接運行程序*/
strcpy(in_fname,argv[1]);
strcpy(pwd,argv[2]);
strcpy(out_fname,argv[3]);
while(*pwd==NULL
||
strlen(pwd)>8
||
strlen(pwd)<6)
{
printf("Password
faied!\n");
printf("Password
6-8:\n");
gets(pwd);
}
while(!strcmp(in_fname,out_fname))
{
printf("文件名不能和源文件相同\n");
printf("Out-file:\n");
gets(out_fname);
while(*in_fname==NULL)
{
printf("Out-file:\n");
gets(out_fname);
}
}
dofile(in_fname,pwd,out_fname);
printf("加密成功,解密請再次運行程序\n");
}
}
/*加密子函數開始*/
void
dofile(char
*in_fname,char
*pwd,char
*out_file)
{
FILE
*fp1,*fp2;
register
char
ch;
int
j=0;
int
j0=strlen(pwd);
fp1=fopen(in_fname,"rb");
if(fp1==NULL)
{
printf("cannot
open
in-file.\n");
exit(1);/*如果不能打開要加密的文件,便退出程序*/
}
fp2=fopen(out_file,"wb");
if(fp2==NULL)
{
printf("cannot
open
or
create
out-file.\n");
exit(1);/*如果不能建立加密後的文件,便退出*/
}
/*加密演算法開始*/
while(j0>=0)
{
ch=fgetc(fp1);
while(!feof(fp1))
{
fputc(ch^pwd[j>=j0?j=0:j++],fp2);/*異或後寫入fp2文件*/
ch=fgetc(fp1);
}
j0--;
}
fclose(fp1);/*關閉源文件*/
fclose(fp2);/*關閉目標文件*/
}
void
usage(char
*name)
{
printf("\t=======================File
encryption======================\n");
printf("\tusage:
%s
In-fname
password
out_fname\n",name);
printf("\tExample:
%s
file1.txt
12345678
file2.txt\n",name);
}

㈧ C語言 加密演算法

#include<stdio.h>

#include<string.h>

#defineMAX_LEN1024

#defineMAX_KEY_LEN10

/*key必須是1-9之間的數字*/

/*擁有K個字元的Key,包含且僅包含1-K*/

intCheckKey(char*key)

{

inti,check[MAX_KEY_LEN]={0};

intmax=strlen(key);

intkeyVal;

for(i=0;i<max;i++)

{

keyVal=key[i]-'0';

if(keyVal>max||keyVal<1)

return0;

if(check[keyVal]==1)

return0;

else

check[keyVal]=1;

}

return1;

}

intEncrypt(char*word,char*key,char*secretWord)

{

inti,start;

intnLenWord=strlen(word);

intnLenKey=strlen(key);

intindex[MAX_KEY_LEN];

if(nLenWord%nLenKey!=0)

{

printf("明文的位數不是密鑰位數的整數倍! ");

return0;

}

for(i=0;i<nLenKey;i++)

{

index[i]=key[i]-'0'-1;

}

/*START關鍵代碼*/

start=0;

while(start<nLenWord)

{

for(i=0;i<nLenKey;i++)

{

secretWord[start+i]=word[start+index[i]];

}

start+=nLenKey;

}

secretWord[nLenWord]='';

/*END關鍵代碼*/

return1;

}

intmain()

{

charword[MAX_LEN];

charkey[MAX_KEY_LEN];

charsecretWord[MAX_LEN];

printf("請輸入明文:");

scanf("%1024s",word);

printf("請輸入密鑰:");

scanf("%10s",key);

if(!CheckKey(key))

{

printf("密鑰輸入錯誤! ");

exit(-1);

}

if(Encrypt(word,key,secretWord))

printf("密文是:%s ",secretWord);

return0;

}

㈨ 用c語言設計一個簡單地加密算,解密演算法,並說明其中的原理

恰巧這兩天剛看的一種思路,很簡單的加密解密演算法,我說一下吧。
演算法原理很簡單,假設你的原密碼是A,用A與數B按位異或後得到C,C就是加密後的密碼,用C再與數B按位異或後能得回A。即(A異或B)異或B=A。用C實現很簡單的。
這就相當於,你用原密碼A和特定數字B產生加密密碼C,別人拿到這個加密的密碼C,如果不知道特定的數字B,他是無法解密得到原密碼A的。
對於密碼是數字的情況可以用下面的代碼:
#include <stdio.h>
#define BIRTHDAY 19880314
int main()
{
long a, b;

scanf("%ld", &a);
printf("原密碼:%ld\n", a);
b = BIRTHDAY;
a ^= b;
printf("加密密碼:%ld\n", a);

a ^= b; printf("解密密碼:%ld\n", a);
return 0;
}
如果密碼是字元串的話,最簡單的加密演算法就是對每個字元重新映射,只要加密解密雙方共同遵守同一個映射規則就行啦。

㈩ 用c語言寫des加密演算法

#include <stdio.h> #include <string.h> #include <windows.h> #include <conio.h> #include "Schedle.h" class CShift{ public: DWORDLONG mask[16]; int step[16]; CShift(){ for(int i=0;i<16;i++){ step[i]=2; mask[i]=0xc000000; } step[0]=step[1]=step[8]=step[15]=1; mask[0]=mask[1]=mask[8]=mask[15]=0x8000000; } }; class CDES{ public: CDES(){ m_dwlKey=0; m_dwlData=0; ConvertTableToMask(dwlKey_PC_1,64); //PrintTable(dwlKey_PC_1,7,8); ConvertTableToMask(dwlKey_PC_2,56); ConvertTableToMask(dwlData_IP,64); ConvertTableToMask(dwlData_Expansion,32); ConvertTableToMask(dwlData_FP,64); ConvertTableToMask(dwlData_P,32); Generate_S(); } void PrintBit(DWORDLONG); void EncryptKey(char *); unsigned char* EncryptData(unsigned char *); unsigned char* DescryptData(unsigned char*); private: void ConvertTableToMask(DWORDLONG *,int); void Generate_S(void); void PrintTable(DWORDLONG*,int,int); DWORDLONG ProcessByte(unsigned char*,BOOL); DWORDLONG PermuteTable(DWORDLONG,DWORDLONG*,int); void Generate_K(void); void EncryptKernel(void); DWORDLONG Generate_B(DWORDLONG,DWORDLONG*); /*For verify schele permutation only*/ DWORDLONG UnPermuteTable(DWORDLONG,DWORDLONG*,int); /**************************************/ DWORDLONG dwlData_S[9][4][16]; CShift m_shift; DWORDLONG m_dwlKey; DWORDLONG m_dwlData; DWORDLONG m_dwl_K[17]; }; void CDES::EncryptKey(char *key){ printf("\nOriginal Key: %s",key); m_dwlKey=ProcessByte((unsigned char*)key,TRUE); // PrintBit(m_dwlKey); m_dwlKey=PermuteTable(m_dwlKey,dwlKey_PC_1,56); // PrintBit(m_dwlKey); Generate_K(); // printf("\n******************************************\n"); } void CDES::Generate_K(void){ DWORDLONG C[17],D[17],tmp; C[0]=m_dwlKey>>28; D[0]=m_dwlKey&0xfffffff; for(int i=1;i<=16;i++){ tmp=(C[i-1]&m_shift.mask[i-1])>>(28-m_shift.step[i-1]); C[i]=((C[i-1]<<m_shift.step[i-1])|tmp)&0x0fffffff; tmp=(D[i-1]&m_shift.mask[i-1])>>(28-m_shift.step[i-1]); D[i]=((D[i-1]<<m_shift.step[i-1])|tmp)&0x0fffffff; m_dwl_K[i]=(C[i]<<28)|D[i]; m_dwl_K[i]=PermuteTable(m_dwl_K[i],dwlKey_PC_2,48); } } DWORDLONG CDES::ProcessByte(unsigned char *key,BOOL shift){ unsigned char tmp; DWORDLONG byte=0; int i=0; while(i<8){ while(*key){ if(byte!=0) byte<<=8; tmp=*key; if(shift) tmp<<=1; byte|=tmp; i++; key++; } if(i<8) byte<<=8; i++; } return byte; } DWORDLONG CDES::PermuteTable(DWORDLONG dwlPara,DWOR 基於des演算法的rfid安全系統
DLONG* dwlTable,int nDestLen){ int i=0; DWORDLONG tmp=0,moveBit; while(i<nDestLen){ moveBit=1; if(dwlTable[i]&dwlPara){ moveBit<<=nDestLen-i-1; tmp|=moveBit; } i++; } return tmp; } DWORDLONG CDES::UnPermuteTable(DWORDLONG dwlPara,DWORDLONG* dwlTable,int nDestLen){ DWORDLONG tmp=0; int i=nDestLen-1; while(dwlPara!=0){ if(dwlPara&0x01) tmp|=dwlTable[i]; dwlPara>>=1; i--; } return tmp; } void CDES::PrintTable(DWORDLONG *dwlPara,int col,int row){ int i,j; for(i=0;i<row;i++){ printf("\n"); getch(); for(j=0;j<col;j++) PrintBit(dwlPara[i*col+j]); } } void CDES::PrintBit(DWORDLONG bitstream){ char out[76]; int i=0,j=0,space=0; while(bitstream!=0){ if(bitstream&0x01) out[i++]='1'; else out[i++]='0'; j++; if(j%8==0){ out[i++]=' '; space++; } bitstream=bitstream>>1; } out[i]='\0'; strcpy(out,strrev(out)); printf("%s **:%d\n",out,i-space); } void CDES::ConvertTableToMask(DWORDLONG *mask,int max){ int i=0; DWORDLONG nBit=1; while(mask[i]!=0){ nBit=1; nBit<<=max-mask[i]; mask[i++]=nBit; } } void CDES::Generate_S(void){ int i; int j,m,n; m=n=0; j=1; for(i=0;i<512;i++){ dwlData_S[j][m][n]=OS[i]; n=(n+1)%16; if(!n){ m=(m+1)%4; if(!m) j++; } } } unsigned char * CDES::EncryptData(unsigned char *block){ unsigned char *EncrytedData=new unsigned char(15); printf("\nOriginal Data: %s\n",block); m_dwlData=ProcessByte(block,0); // PrintBit(m_dwlData); m_dwlData=PermuteTable(m_dwlData,dwlData_IP,64); EncryptKernel(); // PrintBit(m_dwlData); DWORDLONG bit6=m_dwlData; for(int i=0;i<11;i++){ EncrytedData[7-i]=(unsigned char)(bit6&0x3f)+46; bit6>>=6; } EncrytedData[11]='\0'; printf("\nAfter Encrypted: %s",EncrytedData); for(i=0;i<8;i++){ EncrytedData[7-i]=(unsigned char)(m_dwlData&0xff); m_dwlData>>=8; } EncrytedData[8]='\0'; return EncrytedData; } void CDES::EncryptKernel(void){ int i=1; DWORDLONG L[17],R[17],B[9],EK,PSB; L[0]=m_dwlData>>32; R[0]=m_dwlData&0xffffffff; for(i=1;i<=16;i++){ L[i]=R[i-1]; R[i-1]=PermuteTable(R[i-1],dwlData_Expansion,48); //Expansion R EK=R[i-1]^m_dwl_K[i]; //E Permutation PSB=Generate_B(EK,B); //P Permutation R[i]=L[i-1]^PSB; } R[16]<<=32; m_dwlData=R[16]|L[16]; m_dwlData=PermuteTable(m_dwlData,dwlData_FP,64); } unsigned char* CDES::DescryptData(unsigned char *desData){ int i=1; unsigned char *DescryptedData=new unsigned char(15); DWORDLONG L[17],R[17],B[9],EK,PSB; DWORDLONG dataPara; dataPara=ProcessByte(desData,0); dataPara=PermuteTable(dataPara,dwlData_IP,64); R[16]=dataPara>>32; L[16]=dataPara&0xffffffff; for(i=16;i>=1;i--){ R[i-1]=L[i]; L[i]=PermuteTable(L[i],dwlData_Expansion,48); //Expansion L EK=L[i]^m_dwl_K[i]; //E Permutation PSB=Generate_B(EK,B); //P Permutation L[i-1]=R[i]^PSB; } L[0]<<=32; dataPara=L[0]|R[0]; dataPara=PermuteTable(dataPara,dwlData_FP,64); // PrintBit(dataPara); for(i=0;i<8;i++){ DescryptedData[7-i]=(unsigned char)(dataPara&0xff); dataPara>>=8; } DescryptedData[8]='\0'; printf("\nAfter Decrypted: %s\n",DescryptedData); return DescryptedData; } DWORDLONG CDES::Generate_B(DWORDLONG EKPara,DWORDLONG *block){ int i,m,n; DWORDLONG tmp=0; for(i=8;i>0;i--){ block[i]=EKPara&0x3f; m=(int)(block[i]&0x20)>>4; m|=block[i]&0x01; n=(int)(block[i]<<1)>>2; block[i]=dwlData_S[i][m][n]; EKPara>>=6; } for(i=1;i<=8;i++){ tmp|=block[i]; tmp<<=4; } tmp>>=4; tmp=PermuteTable(tmp,dwlData_P,32); return tmp; } void main(void){ CDES des; des.EncryptKey("12345678"); unsigned char *result=des.EncryptData((unsigned char*)"DemoData"); des.DescryptData(result); }[1]

熱點內容
php的點餐系統源碼 發布:2024-11-01 20:13:53 瀏覽:714
拜占庭演算法 發布:2024-11-01 20:10:31 瀏覽:357
xcode編譯參數 發布:2024-11-01 20:00:04 瀏覽:665
蘋果5怎麼設置密碼鎖屏 發布:2024-11-01 19:54:55 瀏覽:124
寶塔上傳文件夾 發布:2024-11-01 19:39:50 瀏覽:257
java雲編譯器 發布:2024-11-01 19:34:24 瀏覽:385
免費源碼分享網 發布:2024-11-01 19:29:19 瀏覽:855
硬碟8mb緩存 發布:2024-11-01 19:20:02 瀏覽:192
抖音默認的青少年密碼是多少 發布:2024-11-01 19:18:36 瀏覽:906
電腦伺服器名字在哪裡找 發布:2024-11-01 19:13:27 瀏覽:2