c語言四階龍格庫塔法
❶ 求一個用C語言程序編寫的四階龍格庫塔演算法,最好晚上之前就能寫好,謝謝
#include<stdlib.h>
#include<stdio.h>
/*n表示幾等分,n+1表示他輸出的個數*/
int RungeKutta(double y0,double a,double b,int n,double *x,double *y,int style,double (*function)(double,double))
{
double h=(b-a)/n,k1,k2,k3,k4;
int i;
// x=(double*)malloc((n+1)*sizeof(double));
// y=(double*)malloc((n+1)*sizeof(double));
x[0]=a;
y[0]=y0;
switch(style)
{
case 2:
for(i=0;i<n;i++)
{
x[i+1]=x[i]+h;
k1=function(x[i],y[i]);
k2=function(x[i]+h/2,y[i]+h*k1/2);
y[i+1]=y[i]+h*k2;
}
break;
case 3:
for(i=0;i<n;i++)
{
x[i+1]=x[i]+h;
k1=function(x[i],y[i]);
k2=function(x[i]+h/2,y[i]+h*k1/2);
k3=function(x[i]+h,y[i]-h*k1+2*h*k2);
y[i+1]=y[i]+h*(k1+4*k2+k3)/6;
}
break;
case 4:
for(i=0;i<n;i++)
{
x[i+1]=x[i]+h;
k1=function(x[i],y[i]);
k2=function(x[i]+h/2,y[i]+h*k1/2);
k3=function(x[i]+h/2,y[i]+h*k2/2);
k4=function(x[i]+h,y[i]+h*k3);
y[i+1]=y[i]+h*(k1+2*k2+2*k3+k4)/6;
}
break;
default:
return 0;
}
return 1;
}
double function(double x,double y)
{
return y-2*x/y;
}
//例子求y'=y-2*x/y(0<x<1);y0=1;
/*
int main()
{
double x[6],y[6];
printf("用二階龍格-庫塔方法\n");
RungeKutta(1,0,1,5,x,y,2,function);
for(int i=0;i<6;i++)
printf("x[%d]=%f,y[%d]=%f\n",i,x[i],i,y[i]);
printf("用三階龍格-庫塔方法\n");
RungeKutta(1,0,1,5,x,y,3,function);
for(i=0;i<6;i++)
printf("x[%d]=%f,y[%d]=%f\n",i,x[i],i,y[i]);
printf("用四階龍格-庫塔方法\n");
RungeKutta(1,0,1,5,x,y,4,function);
for(i=0;i<6;i++)
printf("x[%d]=%f,y[%d]=%f\n",i,x[i],i,y[i]);
return 1;
}
❷ 龍格庫塔法的基本原理
該演算法是構建在數學支持的基礎之上的。對於一階精度的拉格朗日中值定理有:
對於微分方程:y'=f(x,y)
y(i+1)=y(i)+h*K1
K1=f(xi,yi)
當用點xi處的斜率近似值K1與右端點xi+1處的斜率K2的算術平均值作為平均斜率K*的近似值,那麼就會得到二階精度的改進拉格朗日中值定理:
y(i+1)=y(i)+[h*( K1+ K2)/2]
K1=f(xi,yi)
K2=f(x(i)+h,y(i)+h*K1)
依次類推,如果在區間[xi,xi+1]內多預估幾個點上的斜率值K1、K2、……Km,並用他們的加權平均數作為平均斜率K*的近似值,顯然能構造出具有很高精度的高階計算公式。經數學推導、求解,可以得出四階龍格-庫塔公式,也就是在工程中應用廣泛的經典龍格-庫塔演算法:
y(i+1)=y(i)+h*( K1+ 2*K2 +2*K3+ K4)/6
K1=f(x(i),y(i))
K2=f(x(i)+h/2,y(i)+h*K1/2)
K3=f(x(i)+h/2,y(i)+h*K2/2)
K4=f(x(i)+h,y(i)+h*K3)
通常所說的龍格-庫塔法是指四階而言的,我們可以仿二階、三階的情形推導出常用的標准四階龍格-庫塔法公式