python實現決策樹
① python中使用scikit-learn的決策樹演算法運行錯誤
你好,你有讀寫的許可權嗎?嘗試普通的文件讀寫操作:
f=open('a.txt', 'w')
如果不能正常運行,那麼嘗試用管理員許可權運行你的程序。或者,修改保存的文件名,'iris.doct'修改為其它的名字,如'abcd.dot'.
② ML - 決策樹(decision tree)
機器學習中分類和預測演算法的評估:
判定樹是一個類似於流程圖的樹結構:其中,每個內部結點表示在一個 屬性上的測試 ,每個分支代表一個 屬性輸出 ,而每個樹葉結點代表 類或類分布 。樹的最頂層是根結點。
機器學習中分類方法中的一個重要演算法
信息和抽象,如何度量?
1948年,香農提出了 」信息熵(entropy)「的概念
一條信息的信息量大小和它的不確定性有直接的關系,要搞清楚一件非常非常不確定的事情,或者
是我們一無所知的事情,需要了解大量信息==> 信息量的度量就等於不確定性的多少
例子:猜世界盃冠軍,假如一無所知,猜多少次?
每個隊奪冠的幾率不是相等的
比特(bit)來衡量信息的多少
變數的不確定性越大,熵也就越大
3.1 決策樹歸納演算法 ( ID3 )
1970-1980, J.Ross. Quinlan, ID3演算法
選擇屬性(A為age時)判斷結點
信息獲取量(Information Gain) :
Gain(A) = Info(D) - Infor_A(D)
Gain(A) =按yes/no分的熵 - 按A屬性分類的熵
通過A來作為節點分類獲取了多少信息
類似
Gain(income) = 0.029
Gain(student) = 0.151
Gain(credit_rating)=0.048
所以,選擇age作為第一個根節點
重復。。。
演算法:
*其他演算法:
C4.5 : Quinlan
Classification and Regression Trees (CART): (L. Breiman, J. Friedman, R. Olshen, C. Stone)
共同點:都是貪心演算法,自上而下(Top-down approach)
區別:屬性選擇度量方法不同: C4.5 (gain ratio), CART(gini index), ID3 (Information Gain)
先剪枝
後剪枝
直觀,便於理解,小規模數據集有效
處理連續變數不好(離散化,閾值選擇對結果影響大)
類別較多時,錯誤增加的比較快
可規模性一般
1. Python
2. Python機器學習的庫: scikit-learn
2.1: 特性:
簡單高效的數據挖掘和機器學習分析
對所有用戶開放,根據不同需求高度可重用性
基於Numpy, SciPy和matplotlib
開源,商用級別:獲得 BSD許可
2.2 覆蓋問題領域:
分類(classification), 回歸(regression), 聚類(clustering), 降維(dimensionality rection)
模型選擇(model selection), 預處理(preprocessing)
3. 使用用scikit-learn
安裝scikit-learn: pip, easy_install, windows installer
安裝必要package:numpy, SciPy和matplotlib, 可使用 Anaconda (包含numpy, scipy等科學計算常用package)
4. 例子:
文檔: http://scikit-learn.org/stable/moles/tree.html
安裝 Graphviz: http://www.graphviz.org/
配置環境變數
轉化dot文件至pdf可視化決策樹:dot -Tpdf iris.dot -o outpu.pdf
③ python構造決策樹要調用什麼包
調用這個包:
sklearn.tree
sklearn(scikit-learn)可以去http://www.lfd.uci.e/~gohlke/pythonlibs/#scikit-learn下載,解壓後放入C:Python27Libsite-packages直接使用。需要用同樣的方法額外下載numpy和scipy包,不然會報錯。
例子:
fromsklearn.datasetsimportload_iris
fromsklearn.model_selectionimportcross_val_score
fromsklearn.
clf=DecisionTreeClassifier(random_state=0)
iris=load_iris()
cross_val_score(clf,iris.data,iris.target,cv=10)
④ python中的sklearn中決策樹使用的是哪一種演算法
要弄清楚這個問題,首先要弄懂決策樹三大流行演算法ID3、C4.5和CART的原理,以及sklearn框架下DecisionTreeClassifier的幫助文檔。
3個演算法的主要區別在於度量信息方法、選擇節點特徵還有分支數量的不同。
ID3,採用熵(entropy)來度量信息不確定度,選擇「信息增益」最大的作為節點特徵,它是多叉樹,即一個節點可以有多個分支。
C4.5,同樣採用熵(entropy)來度量信息不確定度,選擇「信息增益比」最大的作為節點特徵,同樣是多叉樹,即一個節點可以有多個分支。
CART,採用基尼指數(Gini index)來度量信息不純度,選擇基尼指數最小的作為節點特徵,它是二叉樹,即一個節點只分兩支。
然後你認真閱讀sklearn的DecisionTreeClassifier的幫助文檔,可以發現,度量信息的方法默認是Gini,但可以改成entropy,請按需選擇;構建的樹是二叉樹;可以通過設置max_deepth、max_leaf等來實現「剪枝」,這是根據CART的損失函數減少的理論進行的。
所以總結說,如果信息度量方法按照默認的設置,那麼sklearn所用的決策樹分類器就是CART,如果改成了entropy,那麼只是使用了別的度量方法而已。其實兩者差不多。
⑤ 向大神求教!python寫的決策樹的ID3演算法怎麼一直提示bestfeat=labels[bestfeat_index]超出索引啊!
1、對當前訓練集,計算各屬性的信息增益(假設有屬性A1,A2,…An);
2、選擇信息增益最大的屬性Ak(1<=k<=n),作為根節點;
3、把在Ak處取值相同的例子歸於同一子集,作為該節點的一個樹枝,Ak取幾個值就得幾個子集;
4、若在某個子集中的所有樣本都是屬於同一個類型(本位只討論正(Y)、反(N)兩種類型的情況),則給該分支標上類型號作為葉子節點;
5、對於同時含有多種(兩種)類型的子集,則遞歸調用該演算法思路來完成樹的構造。
⑥ python中的sklearn中決策樹使用的是哪一種演算法
sklearn中決策樹分為DecisionTreeClassifier和DecisionTreeRegressor,所以用的演算法是CART演算法,也就是分類與回歸樹演算法(classification and regression tree,CART),劃分標准默認使用的也是Gini,ID3和C4.5用的是信息熵,為何要設置成ID3或者C4.5呢
⑦ python(pandas模塊)
1.什麼是pandas? numpy模塊和pandas模塊都是用於處理數據的模塊。 numpy主要用於針對數組進行統計計算,處理數字數據比較方便。 pandas除了可以處理數字數據,還可...
⑧ 如何將python生成的決策樹利用graphviz畫出來
#這里有一個示例,你可以看一下。
#http://scikit-learn.org/stable/moles/tree.html
>>>fromIPython.displayimportImage
>>>dot_data=tree.export_graphviz(clf,out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True,rounded=True,
special_characters=True)
>>>graph=pydotplus.graph_from_dot_data(dot_data)
>>>Image(graph.create_png())
⑨ 用python實現紅酒數據集的ID3,C4.5和CART演算法
ID3演算法介紹
ID3演算法全稱為迭代二叉樹3代演算法(Iterative Dichotomiser 3)
該演算法要先進行特徵選擇,再生成決策樹,其中特徵選擇是基於「信息增益」最大的原則進行的。
但由於決策樹完全基於訓練集生成的,有可能對訓練集過於「依賴」,即產生過擬合現象。因此在生成決策樹後,需要對決策樹進行剪枝。剪枝有兩種形式,分別為前剪枝(Pre-Pruning)和後剪枝(Post-Pruning),一般採用後剪枝。
信息熵、條件熵和信息增益
信息熵:來自於香農定理,表示信息集合所含信息的平均不確定性。信息熵越大,表示不確定性越大,所含的信息量也就越大。
設x 1 , x 2 , x 3 , . . . x n {x_1, x_2, x_3, ...x_n}x
1
,x
2
,x
3
,...x
n
為信息集合X的n個取值,則x i x_ix
i
的概率:
P ( X = i ) = p i , i = 1 , 2 , 3 , . . . , n P(X=i) = p_i, i=1,2,3,...,n
P(X=i)=p
i
,i=1,2,3,...,n
信息集合X的信息熵為:
H ( X ) = − ∑ i = 1 n p i log p i H(X) =- \sum_{i=1}^{n}{p_i}\log{p_i}
H(X)=−
i=1
∑
n
p
i
logp
i
條件熵:指已知某個隨機變數的情況下,信息集合的信息熵。
設信息集合X中有y 1 , y 2 , y 3 , . . . y m {y_1, y_2, y_3, ...y_m}y
1
,y
2
,y
3
,...y
m
組成的隨機變數集合Y,則隨機變數(X,Y)的聯合概率分布為
P ( x = i , y = j ) = p i j P(x=i,y=j) = p_{ij}
P(x=i,y=j)=p
ij
條件熵:
H ( X ∣ Y ) = ∑ j = 1 m p ( y j ) H ( X ∣ y j ) H(X|Y) = \sum_{j=1}^m{p(y_j)H(X|y_j)}
H(X∣Y)=
j=1
∑
m
p(y
j
)H(X∣y
j
)
由
H ( X ∣ y j ) = − ∑ j = 1 m p ( y j ) ∑ i = 1 n p ( x i ∣ y j ) log p ( x i ∣ y j ) H(X|y_j) = - \sum_{j=1}^m{p(y_j)}\sum_{i=1}^n{p(x_i|y_j)}\log{p(x_i|y_j)}
H(X∣y
j
)=−
j=1
∑
m
p(y
j
)
i=1
∑
n
p(x
i
∣y
j
)logp(x
i
∣y
j
)
和貝葉斯公式:
p ( x i y j ) = p ( x i ∣ y j ) p ( y j ) p(x_iy_j) = p(x_i|y_j)p(y_j)
p(x
i
y
j
)=p(x
i
∣y
j
)p(y
j
)
可以化簡條件熵的計算公式為:
H ( X ∣ Y ) = ∑ j = 1 m ∑ i = 1 n p ( x i , y j ) log p ( x i ) p ( x i , y j ) H(X|Y) = \sum_{j=1}^m \sum_{i=1}^n{p(x_i, y_j)\log\frac{p(x_i)}{p(x_i, y_j)}}
H(X∣Y)=
j=1
∑
m
i=1
∑
n
p(x
i
,y
j
)log
p(x
i
,y
j
)
p(x
i
)
信息增益:信息熵-條件熵,用於衡量在知道已知隨機變數後,信息不確定性減小越大。
d ( X , Y ) = H ( X ) − H ( X ∣ Y ) d(X,Y) = H(X) - H(X|Y)
d(X,Y)=H(X)−H(X∣Y)
python代碼實現
import numpy as np
import math
def calShannonEnt(dataSet):
""" 計算信息熵 """
labelCountDict = {}
for d in dataSet:
label = d[-1]
if label not in labelCountDict.keys():
labelCountDict[label] = 1
else:
labelCountDict[label] += 1
entropy = 0.0
for l, c in labelCountDict.items():
p = 1.0 * c / len(dataSet)
entropy -= p * math.log(p, 2)
return entropy
def filterSubDataSet(dataSet, colIndex, value):
"""返回colIndex特徵列label等於value,並且過濾掉改特徵列的數據集"""
subDataSetList = []
for r in dataSet:
if r[colIndex] == value:
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
subDataSetList.append(newR)
return np.array(subDataSetList)
def chooseFeature(dataSet):
""" 通過計算信息增益選擇最合適的特徵"""
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeatureIndex = -1
for i in range(featureNum):
uniqueValues = np.unique(dataSet[:, i])
condition_entropy = 0.0
for v in uniqueValues: #計算條件熵
subDataSet = filterSubDataSet(dataSet, i, v)
p = 1.0 * len(subDataSet) / len(dataSet)
condition_entropy += p * calShannonEnt(subDataSet)
infoGain = entropy - condition_entropy #計算信息增益
if infoGain >= bestInfoGain: #選擇最大信息增益
bestInfoGain = infoGain
bestFeatureIndex = i
return bestFeatureIndex
def creatDecisionTree(dataSet, featNames):
""" 通過訓練集生成決策樹 """
featureName = featNames[:] # 拷貝featNames,此處不能直接用賦值操作,否則新變數會指向舊變數的地址
classList = list(dataSet[:, -1])
if len(set(classList)) == 1: # 只有一個類別
return classList[0]
if dataSet.shape[1] == 1: #當所有特徵屬性都利用完仍然無法判斷樣本屬於哪一類,此時歸為該數據集中數量最多的那一類
return max(set(classList), key=classList.count)
bestFeatureIndex = chooseFeature(dataSet) #選擇特徵
bestFeatureName = featNames[bestFeatureIndex]
del featureName[bestFeatureIndex] #移除已選特徵列
decisionTree = {bestFeatureName: {}}
featureValueUnique = sorted(set(dataSet[:, bestFeatureIndex])) #已選特徵列所包含的類別, 通過遞歸生成決策樹
for v in featureValueUnique:
FeatureName = featureName[:]
subDataSet = filterSubDataSet(dataSet, bestFeatureIndex, v)
decisionTree[bestFeatureName][v] = creatDecisionTree(subDataSet, FeatureName)
return decisionTree
def classify(decisionTree, featnames, featList):
""" 使用訓練所得的決策樹進行分類 """
classLabel = None
root = decisionTree.keys()[0]
firstGenDict = decisionTree[root]
featIndex = featnames.index(root)
for k in firstGenDict.keys():
if featList[featIndex] == k:
if isinstance(firstGenDict[k], dict): #若子節點仍是樹,則遞歸查找
classLabel = classify(firstGenDict[k], featnames, featList)
else:
classLabel = firstGenDict[k]
return classLabel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
下面用鳶尾花數據集對該演算法進行測試。由於ID3演算法只能用於標稱型數據,因此用在對連續型的數值數據上時,還需要對數據進行離散化,離散化的方法稍後說明,此處為了簡化,先使用每一種特徵所有連續性數值的中值作為分界點,小於中值的標記為1,大於中值的標記為0。訓練1000次,統計准確率均值。
from sklearn import datasets
from sklearn.model_selection import train_test_split
iris = datasets.load_iris()
data = np.c_[iris.data, iris.target]
scoreL = []
for i in range(1000): #對該過程進行10000次
trainData, testData = train_test_split(data) #區分測試集和訓練集
featNames = iris.feature_names[:]
for i in range(trainData.shape[1] - 1): #對訓練集每個特徵,以中值為分界點進行離散化
splitPoint = np.mean(trainData[:, i])
featNames[i] = featNames[i]+'<='+'{:.3f}'.format(splitPoint)
trainData[:, i] = [1 if x <= splitPoint else 0 for x in trainData[:, i]]
testData[:, i] = [1 if x <= splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
print 'score: ', np.mean(scoreL)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
輸出結果為:score: 0.7335,即准確率有73%。每次訓練和預測的准確率分布如下:
數據離散化
然而,在上例中對特徵值離散化的劃分點實際上過於「野蠻」,此處介紹一種通過信息增益最大的標准來對數據進行離散化。原理很簡單,當信息增益最大時,說明用該點劃分能最大程度降低數據集的不確定性。
具體步驟如下:
對每個特徵所包含的數值型特徵值排序
對相鄰兩個特徵值取均值,這些均值就是待選的劃分點
用每一個待選點把該特徵的特徵值劃分成兩類,小於該特徵點置為1, 大於該特徵點置為0,計算此時的條件熵,並計算出信息增益
選擇信息使信息增益最大的劃分點進行特徵離散化
實現代碼如下:
def filterRawData(dataSet, colIndex, value, tag):
""" 用於把每個特徵的連續值按照區分點分成兩類,加入tag參數,可用於標記篩選的是哪一部分數據"""
filterDataList = []
for r in dataSet:
if (tag and r[colIndex] <= value) or ((not tag) and r[colIndex] > value):
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
filterDataList.append(newR)
return np.array(filterDataList)
def dataDiscretization(dataSet, featName):
""" 對數據每個特徵的數值型特徵值進行離散化 """
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
for featIndex in range(featureNum): #對於每一個特徵
uniqueValues = sorted(np.unique(dataSet[:, featIndex]))
meanPoint = []
for i in range(len(uniqueValues) - 1): # 求出相鄰兩個值的平均值
meanPoint.append(float(uniqueValues[i+1] + uniqueValues[i]) / 2.0)
bestInfoGain = 0.0
bestMeanPoint = -1
for mp in meanPoint: #對於每個劃分點
subEntropy = 0.0 #計算該劃分點的信息熵
for tag in range(2): #分別劃分為兩類
subDataSet = filterRawData(dataSet, featIndex, mp, tag)
p = 1.0 * len(subDataSet) / len(dataSet)
subEntropy += p * calShannonEnt(subDataSet)
## 計算信息增益
infoGain = entropy - subEntropy
## 選擇最大信息增益
if infoGain >= bestInfoGain:
bestInfoGain = infoGain
bestMeanPoint = mp
featName[featIndex] = featName[featIndex] + "<=" + "{:.3f}".format(bestMeanPoint)
dataSet[:, featIndex] = [1 if x <= bestMeanPoint else 0 for x in dataSet[:, featIndex]]
return dataSet, featName
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
重新對數據進行離散化,並重復該步驟1000次,同時用sklearn中的DecisionTreeClassifier對相同數據進行分類,分別統計平均准確率。運行代碼如下:
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
scoreL = []
scoreL_sk = []
for i in range(1000): #對該過程進行1000次
featNames = iris.feature_names[:]
trainData, testData = train_test_split(data) #區分測試集和訓練集
trainData_tmp = .(trainData)
testData_tmp = .(testData)
discritizationData, discritizationFeatName= dataDiscretization(trainData, featNames) #根據信息增益離散化
for i in range(testData.shape[1]-1): #根據測試集的區分點離散化訓練集
splitPoint = float(discritizationFeatName[i].split('<=')[-1])
testData[:, i] = [1 if x<=splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
clf = DecisionTreeClassifier('entropy')
clf.fit(trainData[:, :-1], trainData[:, -1])
clf.predict(testData[:, :-1])
scoreL_sk.append(clf.score(testData[:, :-1], testData[:, -1]))
print 'score: ', np.mean(scoreL)
print 'score-sk: ', np.mean(scoreL_sk)
fig = plt.figure(figsize=(10, 4))
plt.subplot(1,2,1)
pd.Series(scoreL).hist(grid=False, bins=10)
plt.subplot(1,2,2)
pd.Series(scoreL_sk).hist(grid=False, bins=10)
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
兩者准確率分別為:
score: 0.7037894736842105
score-sk: 0.7044736842105263
准確率分布如下:
兩者的結果非常一樣。
(但是。。為什麼根據信息熵離散化得到的准確率比直接用均值離散化的准確率還要低啊??哇的哭出聲。。)
最後一次決策樹圖形如下:
決策樹剪枝
由於決策樹是完全依照訓練集生成的,有可能會有過擬合現象,因此一般會對生成的決策樹進行剪枝。常用的是通過決策樹損失函數剪枝,決策樹損失函數表示為:
C a ( T ) = ∑ t = 1 T N t H t ( T ) + α ∣ T ∣ C_a(T) = \sum_{t=1}^TN_tH_t(T) +\alpha|T|
C
a
(T)=
t=1
∑
T
N
t
H
t
(T)+α∣T∣
其中,H t ( T ) H_t(T)H
t
(T)表示葉子節點t的熵值,T表示決策樹的深度。前項∑ t = 1 T N t H t ( T ) \sum_{t=1}^TN_tH_t(T)∑
t=1
T
N
t
H
t
(T)是決策樹的經驗損失函數當隨著T的增加,該節點被不停的劃分的時候,熵值可以達到最小,然而T的增加會使後項的值增大。決策樹損失函數要做的就是在兩者之間進行平衡,使得該值最小。
對於決策樹損失函數的理解,如何理解決策樹的損失函數? - 陶輕松的回答 - 知乎這個回答寫得挺好,可以按照答主的思路理解一下
C4.5演算法
ID3演算法通過信息增益來進行特徵選擇會有一個比較明顯的缺點:即在選擇的過程中該演算法會優先選擇類別較多的屬性(這些屬性的不確定性小,條件熵小,因此信息增益會大),另外,ID3演算法無法解決當每個特徵屬性中每個分類都只有一個樣本的情況(此時每個屬性的條件熵都為0)。
C4.5演算法ID3演算法的改進,它不是依據信息增益進行特徵選擇,而是依據信息增益率,它添加了特徵分裂信息作為懲罰項。定義分裂信息:
S p l i t I n f o ( X , Y ) = − ∑ i n ∣ X i ∣ ∣ X ∣ log ∣ X i ∣ ∣ X ∣ SplitInfo(X, Y) =-\sum_i^n\frac{|X_i|}{|X|}\log\frac{|X_i|}{|X|}
SplitInfo(X,Y)=−
i
∑
n
∣X∣
∣X
i
∣
log
∣X∣
∣X
i
∣
則信息增益率為:
G a i n R a t i o ( X , Y ) = d ( X , Y ) S p l i t I n f o ( X , Y ) GainRatio(X,Y)=\frac{d(X,Y)}{SplitInfo(X, Y)}
GainRatio(X,Y)=
SplitInfo(X,Y)
d(X,Y)
關於ID3和C4.5演算法
在學習分類回歸決策樹演算法時,看了不少的資料和博客。關於這兩個演算法,ID3演算法是最早的分類演算法,這個演算法剛出生的時候其實帶有很多缺陷:
無法處理連續性特徵數據
特徵選取會傾向於分類較多的特徵
沒有解決過擬合的問題
沒有解決缺失值的問題
即該演算法出生時是沒有帶有連續特徵離散化、剪枝等步驟的。C4.5作為ID3的改進版本彌補列ID3演算法不少的缺陷:
通過信息最大增益的標准離散化連續的特徵數據
在選擇特徵是標准從「最大信息增益」改為「最大信息增益率」
通過加入正則項系數對決策樹進行剪枝
對缺失值的處理體現在兩個方面:特徵選擇和生成決策樹。初始條件下對每個樣本的權重置為1。
特徵選擇:在選取最優特徵時,計算出每個特徵的信息增益後,需要乘以一個**「非缺失值樣本權重占總樣本權重的比例」**作為系數來對比每個特徵信息增益的大小
生成決策樹:在生成決策樹時,對於缺失的樣本我們按照一定比例把它歸屬到每個特徵值中,比例為該特徵每一個特徵值占非缺失數據的比重
關於C4.5和CART回歸樹
作為ID3的改進版本,C4.5克服了許多缺陷,但是它自身還是存在不少問題:
C4.5的熵運算中涉及了對數運算,在數據量大的時候效率非常低。
C4.5的剪枝過於簡單
C4.5隻能用於分類運算不能用於回歸
當特徵有多個特徵值是C4.5生成多叉樹會使樹的深度加深
————————————————
版權聲明:本文為CSDN博主「Sarah Huang」的原創文章,遵循CC 4.0 BY-SA版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/weixin_44794704/article/details/89406612
⑩ 基於python的決策樹能進行多分類嗎
決策樹主文件 tree.py
[python] view plain
#coding:utf-8
frommathimportlog
importjson
fromplotimportcreatePlot
classDecisionTree():
def__init__(self,criterion="entropy"):
self.tree=None
self.criterion=criterion
def_is_continuous_value(self,a):
#判斷一個值是否是連續型變數
iftype(a).__name__.lower().find('float')>-1or
type(a).__name__.lower().find('int')>-1:
returnTrue
else:
returnFalse
def_calc_entropy(self,dataset):
#計算數據集的香農熵
classes=dataset.ix[:,-1]
total=len(classes)
cls_count={}
forclsinclasses:
ifclsnotincls_count.keys():
cls_count[cls]=0
cls_count[cls]+=1
entropy=1.0
forkeyincls_count:
prob=float(cls_count[key])/total
entropy-=prob*log(prob,2)
returnentropy
def_calc_gini(self,dataset):
#計算數據集的Gini指數
classes=dataset.ix[:,-1]
total=len(classes)
cls_count={}
forclsinclasses:
ifclsnotincls_count.keys():
cls_count[cls]=0
cls_count[cls]+=1
gini=1.0
forkeyincls_count:
prob=float(cls_count[key])/total
gini-=prob**2
returngini
def_split_data_category(self,dataset,feature,value):
#對分類變數進行拆分
#將feature列的值為value的記錄抽取出來,同時刪除feature列