當前位置:首頁 » 編程語言 » python爬蟲爬取網站

python爬蟲爬取網站

發布時間: 2022-11-15 19:34:59

A. python爬蟲可以爬哪些網站

理論上可以爬任何網站。

但是爬取內容時一定要慎重,有些底線不能觸碰,否則很有可能真的爬進去!

B. Python爬取知乎與我所理解的爬蟲與反爬蟲

關於知乎驗證碼登陸的問題,用到了Python上一個重要的圖片處理庫PIL,如果不行,就把圖片存到本地,手動輸入。

通過對知乎登陸是的抓包,可以發現登陸知乎,需要post三個參數,一個是賬號,一個是密碼,一個是xrsf。
這個xrsf隱藏在表單裡面,每次登陸的時候,應該是伺服器隨機產生一個字元串。所有,要模擬登陸的時候,必須要拿到xrsf。

用chrome (或者火狐 httpfox 抓包分析)的結果:

所以,必須要拿到xsrf的數值,注意這是一個動態變化的參數,每次都不一樣。

拿到xsrf,下面就可以模擬登陸了。
使用requests庫的session對象,建立一個會話的好處是,可以把同一個用戶的不同請求聯系起來,直到會話結束都會自動處理cookies。

注意:cookies 是當前目錄的一個文件,這個文件保存了知乎的cookie,如果是第一個登陸,那麼當然是沒有這個文件的,不能通過cookie文件來登陸。必須要輸入密碼。

這是登陸的函數,通過login函數來登陸,post 自己的賬號,密碼和xrsf 到知乎登陸認證的頁面上去,然後得到cookie,將cookie保存到當前目錄下的文件裡面。下次登陸的時候,直接讀取這個cookie文件。

這是cookie文件的內容

以下是源碼

運行結果:

https://github.com/zhaozhengcoder/Spider/tree/master/spider_hu

反爬蟲最基本的策略:

爬蟲策略:
這兩個都是在http協議的報文段的檢查,同樣爬蟲端可以很方便的設置這些欄位的值,來欺騙伺服器。

反爬蟲進階策略:
1.像知乎一樣,在登錄的表單裡面放入一個隱藏欄位,裡面會有一個隨機數,每次都不一樣,這樣除非你的爬蟲腳本能夠解析這個隨機數,否則下次爬的時候就不行了。
2.記錄訪問的ip,統計訪問次數,如果次數太高,可以認為這個ip有問題。

爬蟲進階策略:
1.像這篇文章提到的,爬蟲也可以先解析一下隱藏欄位的值,然後再進行模擬登錄。
2.爬蟲可以使用ip代理池的方式,來避免被發現。同時,也可以爬一會休息一會的方式來降低頻率。另外,伺服器根據ip訪問次數來進行反爬,再ipv6沒有全面普及的時代,這個策略會很容易造成誤傷。(這個是我個人的理解)。

通過Cookie限制進行反爬蟲:
和Headers校驗的反爬蟲機制類似,當用戶向目標網站發送請求時,會再請求數據中攜帶Cookie,網站通過校驗請求信息是否存在Cookie,以及校驗Cookie的值來判定發起訪問請求的到底是真實的用戶還是爬蟲,第一次打開網頁會生成一個隨機cookie,如果再次打開網頁這個Cookie不存在,那麼再次設置,第三次打開仍然不存在,這就非常有可能是爬蟲在工作了。

反爬蟲進進階策略:
1.數據投毒,伺服器在自己的頁面上放置很多隱藏的url,這些url存在於html文件文件裡面,但是通過css或者js使他們不會被顯示在用戶看到的頁面上面。(確保用戶點擊不到)。那麼,爬蟲在爬取網頁的時候,很用可能取訪問這個url,伺服器可以100%的認為這是爬蟲乾的,然後可以返回給他一些錯誤的數據,或者是拒絕響應。

爬蟲進進階策略:
1.各個網站雖然需要反爬蟲,但是不能夠把網路,谷歌這樣的搜索引擎的爬蟲給幹了(幹了的話,你的網站在網路都說搜不到!)。這樣爬蟲應該就可以冒充是網路的爬蟲去爬。(但是ip也許可能被識破,因為你的ip並不是網路的ip)

反爬蟲進進進階策略:
給個驗證碼,讓你輸入以後才能登錄,登錄之後,才能訪問。

爬蟲進進進階策略:
圖像識別,機器學習,識別驗證碼。不過這個應該比較難,或者說成本比較高。

參考資料:
廖雪峰的python教程
靜覓的python教程
requests庫官方文檔
segmentfault上面有一個人的關於知乎爬蟲的博客,找不到鏈接了

C. Python編程基礎之(五)Scrapy爬蟲框架

經過前面四章的學習,我們已經可以使用Requests庫、Beautiful Soup庫和Re庫,編寫基本的Python爬蟲程序了。那麼這一章就來學習一個專業的網路爬蟲框架--Scrapy。沒錯,是框架,而不是像前面介紹的函數功能庫。

Scrapy是一個快速、功能強大的網路爬蟲框架。

可能大家還不太了解什麼是框架,爬蟲框架其實是實現爬蟲功能的一個軟體結構和功能組件的集合。

簡而言之, Scrapy就是一個爬蟲程序的半成品,可以幫助用戶實現專業的網路爬蟲。

使用Scrapy框架,不需要你編寫大量的代碼,Scrapy已經把大部分工作都做好了,允許你調用幾句代碼便自動生成爬蟲程序,可以節省大量的時間。

當然,框架所生成的代碼基本是一致的,如果遇到一些特定的爬蟲任務時,就不如自己使用Requests庫搭建來的方便了。

PyCharm安裝

測試安裝:

出現框架版本說明安裝成功。

掌握Scrapy爬蟲框架的結構是使用好Scrapy的重中之重!

先上圖:

整個結構可以簡單地概括為: 「5+2」結構和3條數據流

5個主要模塊(及功能):

(1)控制所有模塊之間的數據流。

(2)可以根據條件觸發事件。

(1)根據請求下載網頁。

(1)對所有爬取請求進行調度管理。

(1)解析DOWNLOADER返回的響應--response。

(2)產生爬取項--scraped item。

(3)產生額外的爬取請求--request。

(1)以流水線方式處理SPIDER產生的爬取項。

(2)由一組操作順序組成,類似流水線,每個操作是一個ITEM PIPELINES類型。

(3)清理、檢查和查重爬取項中的HTML數據並將數據存儲資料庫中。

2個中間鍵:

(1)對Engine、Scheler、Downloader之間進行用戶可配置的控制。

(2)修改、丟棄、新增請求或響應。

(1)對請求和爬取項進行再處理。

(2)修改、丟棄、新增請求或爬取項。

3條數據流:

(1):圖中數字 1-2

1:Engine從Spider處獲得爬取請求--request。

2:Engine將爬取請求轉發給Scheler,用於調度。

(2):圖中數字 3-4-5-6

3:Engine從Scheler處獲得下一個要爬取的請求。

4:Engine將爬取請求通過中間件發送給Downloader。

5:爬取網頁後,Downloader形成響應--response,通過中間件發送給Engine。

6:Engine將收到的響應通過中間件發送給Spider處理。

(3):圖中數字 7-8-9

7:Spider處理響應後產生爬取項--scraped item。

8:Engine將爬取項發送給Item Pipelines。

9:Engine將爬取請求發送給Scheler。

任務處理流程:從Spider的初始爬取請求開始爬取,Engine控制各模塊數據流,不間斷從Scheler處獲得爬取請求,直至請求為空,最後到Item Pipelines存儲數據結束。

作為用戶,只需配置好Scrapy框架的Spider和Item Pipelines,也就是數據流的入口與出口,便可完成一個爬蟲程序的搭建。Scrapy提供了簡單的爬蟲命令語句,幫助用戶一鍵配置剩餘文件,那我們便來看看有哪些好用的命令吧。

Scrapy採用命令行創建和運行爬蟲

PyCharm打開Terminal,啟動Scrapy:

Scrapy基本命令行格式:

具體常用命令如下:

下面用一個例子來學習一下命令的使用:

1.建立一個Scrapy爬蟲工程,在已啟動的Scrapy中繼續輸入:

執行該命令,系統會在PyCharm的工程文件中自動創建一個工程,命名為pythonDemo。

2.產生一個Scrapy爬蟲,以教育部網站為例http://www.moe.gov.cn:

命令生成了一個名為demo的spider,並在Spiders目錄下生成文件demo.py。

命令僅用於生成demo.py文件,該文件也可以手動生成。

觀察一下demo.py文件:

3.配置產生的spider爬蟲,也就是demo.py文件:

4.運行爬蟲,爬取網頁:

如果爬取成功,會發現在pythonDemo下多了一個t20210816_551472.html的文件,我們所爬取的網頁內容都已經寫入該文件了。

以上就是Scrapy框架的簡單使用了。

Request對象表示一個HTTP請求,由Spider生成,由Downloader執行。

Response對象表示一個HTTP響應,由Downloader生成,有Spider處理。

Item對象表示一個從HTML頁面中提取的信息內容,由Spider生成,由Item Pipelines處理。Item類似於字典類型,可以按照字典類型來操作。

D. python 爬蟲怎麼獲取網址

初始地址是要你自己給的。
後續的地址可以通過解析網頁內容(比如 pyquery),通過屬性名提取,比如 pq(item).attr("src")

E. 如何利用python爬取網頁內容

利用python爬取網頁內容需要用scrapy(爬蟲框架),但是很簡單,就三步

  1. 定義item類

  2. 開發spider類

  3. 開發pipeline

想學習更深的爬蟲,可以用《瘋狂python講義》

F. Python爬蟲如何避免爬取網站訪問過於頻繁

一. 關於爬蟲
爬蟲,是一種按照一定的規則自動地抓取互聯網信息的程序。本質是利用程序獲取對我們有利的數據。

反爬蟲,從不是將爬蟲完全杜絕;而是想辦法將爬蟲的訪問量限制在一個可接納的范圍,不要讓它過於頻繁。

二. 提高爬蟲效率的方法
協程。採用協程,讓多個爬蟲一起工作,可以大幅度提高效率。

多進程。使用CPU的多個核,使用幾個核就能提高幾倍。

多線程。將任務分成多個,並發(交替)的執行。

分布式爬蟲。讓多個設備去跑同一個項目,效率也能大幅提升。

打包技術。可以將python文件打包成可執行的exe文件,讓其在後台執行即可。

其他。比如,使用網速好的網路等等。

三. 反爬蟲的措施
限制請求頭,即request header。解決方法:我們可以填寫user-agent聲明自己的身份,有時還要去填寫origin和referer聲明請求的來源。

限制登錄,即不登錄就不能訪問。解決方法:我們可以使用cookies和session的知識去模擬登錄。

復雜的交互,比如設置「驗證碼」來阻攔登錄。這就比較難做,解決方法1:我們用Selenium去手動輸入驗證碼;方法2:我們用一些圖像處理的庫自動識別驗證碼(tesserocr/pytesserart/pillow)。

ip限制。如果這個IP地址,爬取網站頻次太高,那麼伺服器就會暫時封掉來自這個IP地址的請求。 解決方法:使用time.sleep()來對爬蟲的速度進行限制,建立IP代理池或者使用IPIDEA避免IP被封禁。

G. 怎樣用python爬取網頁

#coding=utf-8
importurllib
importre

#網路貼吧網址:https://tieba..com/index.html
#根據URL獲取網頁HTML內容
defgetHtmlContent(url):
page=urllib.urlopen(url)
returnpage.read()

#從HTML中解析出所有jpg的圖片的URL
#從HTML中jpg格式為<img...src="xxx.jpg"width='''>
defgetJPGs(html):
#解析jpg圖片URL的正則表達式
jpgReg=re.compile(r'<img.+?src="(.+?.jpg)"')
#解析出jpg的URL列表
jpgs=re.findall(jpgReg,html)
returnjpgs

#用圖片url下載圖片並保存成制定文件名
defdownloadJPG(imgUrl,fileName):
urllib.urlretrieve(imgUrl,fileName)

#批量下載圖片,默認保存到當前目錄下
defbatchDownloadJPGs(imgUrls,path='../'):#path='./'
#給圖片重命名
count=1
forurlinimgUrls:
downloadJPG(url,''.join([path,'{0}.jpg'.format(count)]))
print"下載圖片第:",count,"張"
count+=1

#封裝:從網路貼吧網頁下載圖片
defdownload(url):
html=getHtmlContent(url)
jpgs=getJPGs(html)
batchDownloadJPGs(jpgs)

defmain():
url="http://www.meituba.com/dongman/"
download(url)

if__name__=='__main__':
main()

H. 如何用Python爬蟲抓取網頁內容

首先,你要安裝requests和BeautifulSoup4,然後執行如下代碼.

importrequests
frombs4importBeautifulSoup

iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'

res=requests.get(iurl)

res.encoding='utf-8'

#print(len(res.text))

soup=BeautifulSoup(res.text,'html.parser')

#標題
H1=soup.select('#artibodyTitle')[0].text

#來源
time_source=soup.select('.time-source')[0].text


#來源
origin=soup.select('#artibodyp')[0].text.strip()

#原標題
oriTitle=soup.select('#artibodyp')[1].text.strip()

#內容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#責任編輯
ae=soup.select('.article-editor')[0].text

這樣就可以了

I. python爬蟲如何分析一個將要爬取的網站

首先,你去爬取一個網站,

你會清楚這個網站是屬於什麼類型的網站(新聞,論壇,貼吧等等)。

你會清楚你需要哪部分的數據

你需要去想需要的數據你將如何編寫表達式去解析。

你會碰到各種反爬措施,無非就是各種網路各種解決。當爬取成本高於數據成本,你會選擇放棄。

你會利用你所學各種語言去解決你將要碰到的問題,利用各種語言的client組件去請求你想要爬取的URL,獲取到HTML,利用正則,XPATH去解析你想要的數據,然後利用sql存儲各類資料庫。

J. 如何用最簡單的Python爬蟲採集整個網站

採集網站數據並不難,但是需要爬蟲有足夠的深度。我們創建一個爬蟲,遞歸地遍歷每個網站,只收集那些網站頁面上的數據。一般的比較費時間的網站採集方法從頂級頁面開始(一般是網站主頁),然後搜索頁面上的所有鏈接,形成列表,再去採集到的這些鏈接頁面,繼續採集每個頁面的鏈接形成新的列表,重復執行。

熱點內容
二級c語言技巧 發布:2025-01-13 07:54:37 瀏覽:2
自動充值腳本 發布:2025-01-13 07:48:02 瀏覽:19
越容易壓縮 發布:2025-01-13 07:37:37 瀏覽:558
ecstore資料庫 發布:2025-01-13 07:29:43 瀏覽:297
手機設置密碼忘記了怎麼解開 發布:2025-01-13 07:28:29 瀏覽:21
存儲卡交流 發布:2025-01-13 07:16:06 瀏覽:984
php字元串浮點數 發布:2025-01-13 07:15:28 瀏覽:999
python排序cmp 發布:2025-01-13 07:09:04 瀏覽:73
雲腳本精靈 發布:2025-01-13 07:03:27 瀏覽:619
高維訪問 發布:2025-01-13 07:03:23 瀏覽:976