topython
Ⅰ python為什麼能擴展
Python 具有高可擴展性,存在許多使用 C 語言或 Fortran 編寫擴展的方法。必要時,Python 代碼可以直接將這些擴展作為子常式來調用。這部分討論用於構建擴展的一些主要編譯器(絕對不是完整列表)。
相關推薦:《Python基礎教程》
Cython
Cython(不同於 CPython)既是指一種語言,也是指一種編譯器。Cython 語言是添加了 C 語言語法的 Python 語言的超集。Cython 可以在代碼段或完整函數中顯式釋放 GIL。變數和類屬性上的 C 類型聲明以及對 C 函數的調用都使用 C 語法。其餘部分代碼則使用 Python 語法。通過這個混合的 Cython 代碼,Cython 編譯器可生成高效的 C 代碼。任何定期優化的 C/C++ 編譯器都可以編譯此 C 代碼,從而高度優化擴展的運行時代碼,性能接近於原生的 C 代碼性能。
Numba
Numba 是一個動態、即時 (JIT) 且可感知 NumPy 的 Python 編譯器。Numba 使用 LLVM 編譯器基礎架構,生成優化的機器代碼和從 Python 調用代碼的包裝器。與 Cython 不同,編碼使用常規的 Python 語言。Numba 可讀取來自裝飾器中所嵌入注釋的類型信息,並優化代碼。對於使用 NumPy 數據結構的程序,比如數組以及許多數學函數,它可以實現與 C 或 Fortran 語言類似的性能。NumPy 對線性代數和矩陣函數使用硬體加速,利用 LAPACK 和 BLAS 提供額外加速,大大提升了性能,參見 IBM 博客文章C、Julia、Python、Numba 和 Cython 在 LU 因式分解方面的速度比較。
除 CPU 以外,Numba 還能夠使用 GP-GPU 後端。Anaconda, Inc. 是 Python 某個主要發行版的幕後公司,該公司還開發了 Numba 和商業版的 Numba Pro。
Fortran to Python Interface Generator
Fortran to Python Interface Generator (F2Py) 起初為一個獨立的程序包,現在包含在 NumPy 中。F2Py 支持 Python 調用以 Fortran 編寫的數值常式,就好像它們是另一個 Python 模塊一樣。因為 Python 解釋器無法理解 Fortran 源代碼,所以 F2Py 以動態庫文件格式將 Fortran 編譯為本機代碼,這是一種共享對象,包含具有 Python 模塊介面的函數。因此,Python 可以直接將這些函數作為子常式來調用,以原生 Fortran 代碼的速度和性能來執行。
Ⅱ 如何系統地自學 Python
是否非常想學好 Python,一方面被瑣事糾纏,一直沒能動手,另一方面,擔心學習成本太高,心裡默默敲著退堂鼓?
幸運的是,Python 是一門初學者友好的編程語言,想要完全掌握它,你不必花上太多的時間和精力。
Python 的設計哲學之一就是簡單易學,體現在兩個方面:
語法簡潔明了:相對 Ruby 和 Perl,它的語法特性不多不少,大多數都很簡單直接,不玩兒玄學。
切入點很多:Python 可以讓你可以做很多事情,科學計算和數據分析、爬蟲、Web 網站、游戲、命令行實用工具等等等等,總有一個是你感興趣並且願意投入時間的。
- 用一種方法,最好是只有一種方法來做一件事。
廢話不多說,學會一門語言的捷徑只有一個: Getting Started
¶ 起步階段
任何一種編程語言都包含兩個部分:硬知識和軟知識,起步階段的主要任務是掌握硬知識。
硬知識
「硬知識」指的是編程語言的語法、演算法和數據結構、編程範式等,例如:變數和類型、循環語句、分支、函數、類。這部分知識也是具有普適性的,看上去是掌握了一種語法,實際是建立了一種思維。例如:讓一個 Java 程序員去學習 Python,他可以很快的將 Java 中的學到的面向對象的知識 map 到 Python 中來,因此能夠快速掌握 Python 中面向對象的特性。
如果你是剛開始學習編程的新手,一本可靠的語法書是非常重要的。它看上去可能非常枯燥乏味,但對於建立穩固的編程思維是必不可少。
下面列出了一些適合初學者入門的教學材料:
廖雪峰的 Python 教程 Python 中文教程的翹楚,專為剛剛步入程序世界的小白打造。
笨方法學 Python 這本書在講解 Python 的語法成分時,還附帶大量可實踐的例子,非常適合快速起步。
The Hitchhiker』s Guide to Python! 這本指南著重於 Python 的最佳實踐,不管你是 Python 專家還是新手,都能獲得極大的幫助。
Python 的哲學:
學習也是一樣,雖然推薦了多種學習資料,但實際學習的時候,最好只選擇其中的一個,堅持看完。
必要的時候,可能需要閱讀講解數據結構和演算法的書,這些知識對於理解和使用 Python 中的對象模型有著很大的幫助。
軟知識
「軟知識」則是特定語言環境下的語法技巧、類庫的使用、IDE的選擇等等。這一部分,即使完全不了解不會使用,也不會妨礙你去編程,只不過寫出的程序,看上去顯得「傻」了些。
對這些知識的學習,取決於你嘗試解決的問題的領域和深度。對初學者而言,起步階段極易走火,或者在選擇 Python 版本時徘徊不決,一會兒看 2.7 一會兒又轉到 3.0,或者徜徉在類庫的大海中無法自拔,Scrapy,Numpy,Django 什麼都要試試,或者參與編輯器聖戰、大括弧縮進探究、操作系統辯論賽等無意義活動,或者整天跪舔語法糖,老想著怎麼一行代碼把所有的事情做完,或者去構想聖潔的性能安全通用性健壯性全部滿分的解決方案。
很多「大牛」都會告誡初學者,用這個用那個,少走彎路,這樣反而把初學者推向了真正的彎路。
還不如告訴初學者,學習本來就是個需要你去走彎路出 Bug,只能腳踏實地,沒有奇跡只有狗屎的過程。
選擇一個方向先走下去,哪怕臟丑差,走不動了再看看有沒有更好的解決途徑。
自己走了彎路,你才知道這么做的好處,才能理解為什麼人們可以手寫狀態機去匹配卻偏要發明正則表達式,為什麼面向過程可以解決卻偏要面向對象,為什麼我可以操縱每一根指針卻偏要自動管理內存,為什麼我可以嵌套回調卻偏要用 Promise...
更重要的是,你會明白,高層次的解決方法都是對低層次的封裝,並不是任何情況下都是最有效最合適的。
技術涌進就像波浪一樣,那些陳舊的封存已久的技術,消退了遲早還會涌回的。就像現在移動端應用、手游和 HTML5 的火熱,某些方面不正在重演過去 PC 的那些歷史么?
因此,不要擔心自己走錯路誤了終身,堅持並保持進步才是正道。
起步階段的核心任務是掌握硬知識,軟知識做適當了解,有了穩固的根,粗壯的枝幹,才能長出濃密的葉子,結出甜美的果實。
¶ 發展階段
完成了基礎知識的學習,必定會感到一陣空虛,懷疑這些語法知識是不是真的有用。
沒錯,你的懷疑是非常正確的。要讓 Python 發揮出它的價值,當然不能停留在語法層面。
發展階段的核心任務,就是「跳出 Python,擁抱世界」。
在你面前會有多個分支:科學計算和數據分析、爬蟲、Web 網站、游戲、命令行實用工具等等等等,這些都不是僅僅知道 Python 語法就能解決的問題。
拿爬蟲舉例,如果你對計算機網路,HTTP 協議,HTML,文本編碼,JSON 一無所知,你能做好這部分的工作么?而你在起步階段的基礎知識也同樣重要,如果你連循環遞歸怎麼寫都還要查文檔,連 BFS 都不知道怎麼實現,這就像工匠做石凳每次起錘都要思考錘子怎麼使用一樣,非常低效。
在這個階段,不可避免要接觸大量類庫,閱讀大量書籍的。
類庫方面
「Awesome Python 項目」:vinta/awesome-python · GitHub
這里列出了你在嘗試解決各種實際問題時,Python 社區已有的工具型類庫,如下圖所示:
vinta/awesome-python
你可以按照實際需求,尋找你需要的類庫。
至於相關類庫如何使用,必須掌握的技能便是閱讀文檔。由於開源社區大多數文檔都是英文寫成的,所以,英語不好的同學,需要惡補下。
書籍方面
這里我只列出一些我覺得比較有一些幫助的書籍,詳細的請看豆瓣的書評:
科學和數據分析:
❖「集體智慧編程」:集體智慧編程 (豆瓣)
❖「數學之美」:數學之美 (豆瓣)
❖「統計學習方法」:統計學習方法 (豆瓣)
❖「Pattern Recognition And Machine Learning」:Pattern Recognition And Machine Learning (豆瓣)
❖「數據科學實戰」:數據科學實戰 (豆瓣)
❖「數據檢索導論」:信息檢索導論 (豆瓣)
爬蟲:
❖「HTTP 權威指南」:HTTP權威指南 (豆瓣)
Web 網站:
❖「HTML & CSS 設計與構建網站」:HTML & CSS設計與構建網站 (豆瓣)
...
列到這里已經不需要繼續了。
聰明的你一定會發現上面的大部分書籍,並不是講 Python 的書,而更多的是專業知識。
事實上,這里所謂「跳出 Python,擁抱世界」,其實是發現 Python 和專業知識相結合,能夠解決很多實際問題。這個階段能走到什麼程度,更多的取決於自己的專業知識。
¶ 深入階段
這個階段的你,對 Python 幾乎了如指掌,那麼你一定知道 Python 是用 C 語言實現的。
可是 Python 對象的「動態特徵」是怎麼用相對底層,連自動內存管理都沒有的C語言實現的呢?這時候就不能停留在表面了,勇敢的拆開 Python 的黑盒子,深入到語言的內部,去看它的歷史,讀它的源碼,才能真正理解它的設計思路。
這里推薦一本書:
「Python 源碼剖析」:Python源碼剖析 (豆瓣)
這本書把 Python 源碼中最核心的部分,給出了詳細的闡釋,不過閱讀此書需要對 C 語言內存模型和指針有著很好的理解。
另外,Python 本身是一門雜糅多種範式的動態語言,也就是說,相對於 C 的過程式、 Haskell 等的函數式、Java 基於類的面向對象而言,它都不夠純粹。換而言之,編程語言的「道學」,在 Python 中只能有限的體悟。學習某種編程範式時,從那些面向這種範式更加純粹的語言出發,才能有更深刻的理解,也能了解到 Python 語言的根源。
這里推薦一門公開課
「編程範式」:斯坦福大學公開課:編程範式
講師高屋建瓴,從各種編程範式的代表語言出發,給出了每種編程範式最核心的思想。
值得一提的是,這門課程對C語言有非常深入的講解,例如C語言的范型和內存管理。這些知識,對閱讀 Python 源碼也有大有幫助。
Python 的許多最佳實踐都隱藏在那些眾所周知的框架和類庫中,例如 Django、Tornado 等等。在它們的源代碼中淘金,也是個不錯的選擇。
¶ 最後的話
每個人學編程的道路都是不一樣的,其實大都殊途同歸,沒有迷路的人只有不能堅持的人!
希望想學 Python 想學編程的同學,不要猶豫了,看完這篇文章,
Just Getting Started !!!
Ⅲ 如何系統地自學 Python
是否非常想學好Python,一方面被瑣事糾纏,一直沒能動手,另一方面,擔心學習成本太高,心裡默默敲著退堂鼓?幸運的是,Python是一門初學者友好的編程語言,想要完全掌握它,你不必花上太多的時間和精力。Python的設計哲學之一就是簡單易學,體現在兩個方面:語法簡潔明了:相對Ruby和Perl,它的語法特性不多不少,大多數都很簡單直接,不玩兒玄學。切入點很多:Python可以讓你可以做很多事情,科學計算和數據分析、爬蟲、Web網站、游戲、命令行實用工具等等等等,總有一個是你感興趣並且願意投入時間的。廢話不多說,學會一門語言的捷徑只有一個:GettingStarted¶起步階段任何一種編程語言都包含兩個部分:硬知識和軟知識,起步階段的主要任務是掌握硬知識。°1硬知識「硬知識」指的是編程語言的語法、演算法和數據結構、編程範式等,例如:變數和類型、循環語句、分支、函數、類。這部分知識也是具有普適性的,看上去是掌握了一種語法,實際是建立了一種思維。例如:讓一個Java程序員去學習Python,他可以很快的將Java中的學到的面向對象的知識map到Python中來,因此能夠快速掌握Python中面向對象的特性。如果你是剛開始學習編程的新手,一本可靠的語法書是非常重要的。它看上去可能非常枯燥乏味,但對於建立穩固的編程思維是必不可少。下面列出了一些適合初學者入門的教學材料:❖「笨方法學Python」:awesome-python·GitHub這里列出了你在嘗試解決各種實際問題時,Python社區已有的工具型類庫,如下圖所示:你可以按照實際需求,尋找你需要的類庫。至於相關類庫如何使用,必須掌握的技能便是閱讀文檔。由於開源社區大多數文檔都是英文寫成的,所以,英語不好的同學,需要惡補下。°2書籍方面:這里我只列出一些我覺得比較有一些幫助的書籍,詳細的請看豆瓣的書評:科學和數據分析:❖「集體智慧編程」:集體智慧編程(豆瓣)❖「數學之美」:數學之美(豆瓣)❖「統計學習方法」:統計學習方法(豆瓣)❖「」:(豆瓣)❖「數據科學實戰」:數據科學實戰(豆瓣)❖「數據檢索導論」:信息檢索導論(豆瓣)爬蟲:❖「HTTP權威指南」:HTTP權威指南(豆瓣)Web網站:❖「HTML&CSS設計與構建網站」:HTML&CSS設計與構建網站(豆瓣)列到這里已經不需要繼續了。聰明的你一定會發現上面的大部分書籍,並不是講Python的書,而的是專業知識。事實上,這里所謂「跳出Python,擁抱世界」,其實是發現Python和專業知識相結合,能夠解決很多實際問題。這個階段能走到什麼程度,的取決於自己的專業知識。¶深入階段這個階段的你,對Python幾乎了如指掌,那麼你一定知道Python是用C語言實現的。可是Python對象的「動態特徵」是怎麼用相對底層,連自動內存管理都沒有的C語言實現的呢?這時候就不能停留在表面了,勇敢的拆開Python的黑盒子,深入到語言的內部,去看它的歷史,讀它的源碼,才能真正理解它的設計思路。這里推薦一本書:「Python源碼剖析」:Python源碼剖析(豆瓣)這本書把Python源碼中最核心的部分,給出了詳細的闡釋,不過閱讀此書需要對C語言內存模型和指針有著很好的理解。另外,Python本身是一門雜糅多種範式的動態語言,也就是說,相對於C的過程式、Haskell等的函數式、Java基於類的面向對象而言,它都不夠純粹。換而言之,編程語言的「道學」,在Python中只能有限的體悟。學習某種編程範式時,從那些面向這種範式更加純粹的語言出發,才能有更深刻的理解,也能了解到Python語言的根源。這里推薦一門公開課「編程範式」:斯坦福大學公開課:編程範式講師高屋建瓴,從各種編程範式的代表語言出發,給出了每種編程範式最核心的思想。值得一提的是,這門課程對C語言有非常深入的講解,例如C語言的范型和內存管理。這些知識,對閱讀Python源碼也有大有幫助。Python的許多最佳實踐都隱藏在那些眾所周知的框架和類庫中,例如Django、Tornado等等。在它們的源代碼中淘金,也是個不錯的選擇。¶最後的話每個人學編程的道路都是不一樣的,其實大都殊途同歸,沒有迷路的人只有不能堅持的人。雖然聽上去有點雞湯,但是這是事實。希望想學Python想學編程的同學,不要猶豫了,看完這篇文章,Justgettingstarted~
Ⅳ 編寫程序顯示三條消息: "Welcome to Python","Welcome to Compu
如果是單獨顯示的話比較簡單,但是如果是嵌入的話就不容易了。需要開一個新的進程,然後重定向其輸出,再放到自己的界面里。linux下比較簡單,但是win就下面完全不一樣了。我記得pywin32可以做到。推薦你看一下[多進程,管道]這兩個部分。
Ⅳ 有哪些值得推薦的Python學習網站
1.Python.org
Python官方網站。你可以從這里下載Python、使用、學習Python。官方文檔自然是最權威的學習資料,只要你英文水平夠,學習起來應該不難。
2.Python教程
Python教程以及以其為代表的一系列中文Python教程。考慮到可能部分人的英文水平會成為閱讀Python官方文檔的障礙,所以中文教程也是必須的。相對於官方文檔,這批教程可能更加適合初學者,也比較能夠建立體系。
3.Stack Overflow
英語站點,50%的程序員日常工作就是從Google復制代碼,剩下的50%就是從這個網站復制了。
4.Django
以及其他常用的所有框架的文檔。不同的學習方向會有不同的框架,比如tensorflow、Flask 、Tornado、Requests、Scrapy等等。
5.CSDN
以CSDN為代表的一眾國內博客站,還有51CTO、開源中國、博客園等等。
Ⅵ 編寫程序顯示三條消息: "Welcome to Python","Welcome to Compu
print("Welcome to Python")
print("Welcome to Computer Science ")
print("Programming is fun")
Ⅶ python最佳入門教程(1): python的安裝
本教程基於python3.x, 是針對初學者的一系列python入門教程,在知乎上常有人問我計算機該怎麼學,如何自學編程,筆者也是通過自學編程而進入IT這一行業的,回顧入行的這幾年,從音視頻流媒體輾轉到人工智慧深度學習,機器視覺,我是下了不少苦心的,對於如何學習有自己的一套理論和實踐方法,很多人自言學編程不得其門,把學不會歸咎於天分,其實芸芸眾生,智力無別,你現在所看到的是技術大牛們一個個超凡絕頂(然知此絕頂非彼絕頂),看不到的是曾經的他們,也在每個晝夜裡用心苦學。再者學一門技術,需要勤學刻苦,是需要講究方法和基礎的,方法對了就事半功倍,所謂的天才也無不是建立在扎實的基礎之上。
在windows中安裝python
首先打開python官網https://www.python.org/,點擊頁面downloads導航按鈕,下載windows最新的基於web安裝的安裝器,右鍵以管理員身份運行 安裝包,會出現如下界面:
將Add Python 3.7 to PATH 進行勾選,勾選此項的目的在於將python解釋器加入系統環境變數,則在後續的python開發中可直接在windows 命令行中執行python腳本。所謂的環境變數是系統運行環境的一系列參數,比如這里的系統環境變數是PATH,PATH保存了與路徑相關的參數,系統在路徑查找中,會對PATH保存的路徑進行搜索。
點擊install Now按鈕執行python的安裝
打開windows命令行界面(按windows鍵輸入cmd命令),輸入python -V,出現python版本的相關輸出,即表示安裝成功。
在Linux系統中安裝python
筆者的系統是CentOS, Linux系統默認有安裝python,但是其版本是2.x,在這里筆者以源碼安裝的形式來安裝python 3.X。首先進入python源碼包頁面 點擊下載最新的gzip格式的python源碼包,上傳到伺服器然後進行解壓,解壓後的目錄結構如下圖所示:
Linux中的configure與make
configure是Linux中的腳本配置工具,用來對源碼的當前安裝環境進行檢測,若檢測無誤,會在當前目錄生成一個供源碼編譯的Makefile腳本文件。
make是Linux系統下的編譯安裝工具,用來解釋執行makefile文件中的腳本命令,編譯命令。
現在我們開始編譯安裝python
(1) 在當前目錄執行./configure(2) 輸入 make && sudo make install
若無指定安裝目錄,python會被默認安裝在/usr/local目錄中, 讀者可以執行./configure --prefix=「你自定義的安裝目錄」來配置安裝路徑。安裝完畢以後進入/usr/local/bin目錄,輸入 「python3.x -V」 (這里的python3.x為你所安裝的python版本),若出現與python版本的相關輸出,即表示安裝成功。
為安裝的python設置軟鏈接
安裝的python可以以絕對路徑的方式來執行,每次敲一大段路徑來執行python未免麻煩,通常我們會給安裝的python設置軟鏈接,這里的軟鏈接類似於windows的快捷方式。
輸入以下命令來給python設置軟鏈接,筆者安裝的版本是python3.7, pip是python的包管理工具,會在教程的後續章節中進行詳細講解。
ln -s /usr/bin/python3 /usr/local/bin/python3.7 # 表示設置python3 為 /usr/local/bin/python3.7的快捷方式ln -s /usr/bin/pip3 /usr/local/bin/pip3.7 # 表示設置pip3 為 /usr/local/bin/pip3.7的快捷方式
Ⅷ 初學者怎麼學習Python
初學者、零基礎學Python的話,建議參加培訓班,入門快、效率高、周期短、實戰項目豐富,還可以提升就業競爭力。
以下是老男孩教育Python全棧課程內容:階段一:Python開發基礎
Python開發基礎課程內容包括:計算機硬體、操作系統原理、安裝linux操作系統、linux操作系統維護常用命令、Python語言介紹、環境安裝、基本語法、基本數據類型、二進制運算、流程式控制制、字元編碼、文件處理、數據類型、用戶認證、三級菜單程序、購物車程序開發、函數、內置方法、遞歸、迭代器、裝飾器、內置方法、員工信息表開發、模塊的跨目錄導入、常用標准庫學習,b加密\re正則\logging日誌模塊等,軟體開發規范學習,計算器程序、ATM程序開發等。
階段二:Python高級級編編程&資料庫開發
Python高級級編編程&資料庫開發課程內容包括:面向對象介紹、特性、成員變數、方法、封裝、繼承、多態、類的生成原理、MetaClass、__new__的作用、抽象類、靜態方法、類方法、屬性方法、如何在程序中使用面向對象思想寫程序、選課程序開發、TCP/IP協議介紹、Socket網路套接字模塊學習、簡單遠程命令執行客戶端開發、C\S架構FTP伺服器開發、線程、進程、隊列、IO多路模型、資料庫類型、特性介紹,表欄位類型、表結構構建語句、常用增刪改查語句、索引、存儲過程、視圖、觸發器、事務、分組、聚合、分頁、連接池、基於資料庫的學員管理系統開發等。
階段三:前端開發
前端開發課程內容包括:HTML\CSS\JS學習、DOM操作、JSONP、原生Ajax非同步載入、購物商城開發、Jquery、動畫效果、事件、定時期、輪播圖、跑馬燈、HTML5\CSS3語法學習、bootstrap、抽屜新熱榜開發、流行前端框架介紹、Vue架構剖析、mvvm開發思想、Vue數據綁定與計算屬性、條件渲染類與樣式綁定、表單控制項綁定、事件綁定webpack使用、vue-router使用、vuex單向數據流與應用結構、vuex actions與mutations熱重載、vue單頁面項目實戰開發等。
階段四:WEB框架開發
WEB框架開發課程內容包括:Web框架原理剖析、Web請求生命周期、自行開發簡單的Web框架、MTV\MVC框架介紹、Django框架使用、路由系統、模板引擎、FBV\CBV視圖、Models ORM、FORM、表單驗證、Django session & cookie、CSRF驗證、XSS、中間件、分頁、自定義tags、Django Admin、cache系統、信號、message、自定義用戶認證、Memcached、redis緩存學習、RabbitMQ隊列學習、Celery分布式任務隊列學習、Flask框架、Tornado框架、Restful API、BBS+Blog實戰項目開發等。
階段五:爬蟲開發
爬蟲開發課程內容包括:Requests模塊、BeautifulSoup,Selenium模塊、PhantomJS模塊學習、基於requests實現登陸:抽屜、github、知乎、博客園、爬取拉鉤職位信息、開發Web版微信、高性能IO性能相關模塊:asyncio、aiohttp、grequests、Twisted、自定義開發一個非同步非阻塞模塊、驗證碼圖像識別、Scrapy框架以及源碼剖析、框架組件介紹(engine、spider、downloader、scheler、pipeline)、分布式爬蟲實戰等。
階段六:全棧項目實戰
全棧項目實戰課程內容包括:互聯網企業專業開發流程講解、git、github協作開發工具講解、任務管理系統講解、介面單元測試、敏捷開發與持續集成介紹、django + uwsgi + nginx生產環境部署學習、介面文檔編寫示例、互聯網企業大型項目架構圖深度講解、CRM客戶關系管理系統開發等。
階段七:數據分析
數據分析課程內容包括:金融、股票知識入門股票基本概念、常見投資工具介紹、市基本交易規則、A股構成等,K線、平均線、KDJ、MACD等各項技術指標分析,股市操作模擬盤演示量化策略的開發流程,金融量化與Python,numpy、pandas、matplotlib模塊常用功能學習在線量化投資平台:優礦、聚寬、米筐等介紹和使用、常見量化策略學習,如雙均線策略、因子選股策略、因子選股策略、小市值策略、海龜交易法則、均值回歸、策略、動量策略、反轉策略、羊駝交易法則、PEG策略等、開發一個簡單的量化策略平台,實現選股、擇時、倉位管理、止盈止損、回測結果展示等功能。
階段八:人工智慧
人工智慧課程內容包括:機器學習要素、常見流派、自然語言識別、分析原理詞向量模型word2vec、剖析分類、聚類、決策樹、隨機森林、回歸以及神經網路、測試集以及評價標准Python機器學習常用庫scikit-learn、數據預處理、Tensorflow學習、基於Tensorflow的CNN與RNN模型、Caffe兩種常用數據源製作、OpenCV庫詳解、人臉識別技術、車牌自動提取和遮蔽、無人機開發、Keras深度學習、貝葉斯模型、無人駕駛模擬器使用和開發、特斯拉遠程式控制制API和自動化駕駛開發等。
階段九:自動化運維&開發
自動化運維&開發課程內容包括:設計符合企業實際需求的CMDB資產管理系統,如安全API介面開發與使用,開發支持windows和linux平台的客戶端,對其它系統開放靈活的api設計與開發IT資產的上線、下線、變更流程等業務流程。IT審計+主機管理系統開發,真實企業系統的用戶行為、管理許可權、批量文件操作、用戶登錄報表等。分布式主機監控系統開發,監控多個服務,多種設備,報警機制,基於http+restful架構開發,實現水平擴展,可輕松實現分布式監控等功能。
階段十:高並發語言GO開發高並發語言GO開發課程內容包括:Golang的發展介紹、開發環境搭建、golang和其他語言對比、字元串詳解、條件判斷、循環、使用數組和map數據類型、go程序編譯和Makefile、gofmt工具、godoc文檔生成工具詳解、斐波那契數列、數據和切片、make&new、字元串、go程序調試、slice&map、map排序、常用標准庫使用、文件增刪改查操作、函數和面向對象詳解、並發、並行與goroute、channel詳解goroute同步、channel、超時與定時器reover捕獲異常、Go高並發模型、Lazy生成器、並發數控制、高並發web伺服器的開發等。
Ⅸ Python中定義:具有相同內容的字元串是同一個對象 s1 = "Welcome to Python" s2 = "Welcome to Python"
首先查閱資料推測了一下id()函數的原理,這里順便引入一個is的概念來方便你理解,看下面這個表達式來說明以下三者之間的關系:
(ob1 is ob2) 等價於 (id(ob1) == id(ob2))
1. id():獲取的是對象在內存中的地址
2. is :比對2個變數的對象引用(對象在內存中的地址,即id() 獲得的值)是否相同。如果相同則返回True,否則返回False。換句話說,就是比對2個變數的對象引用是否指向同一個對象。
3. ==:比對2個變數指向的對象的內容是否相同。
ob1 == ob2 不代表一定會 id(ob1) == id(ob2),因為id()函數不僅要求內容相同,而且要求指向同一個對象。
就是說你問的問題其實是有問題的。。
或者說你的問法:「既然是同一個對象,那為什麼id會不同?」有問題,因為「他們不是同一個對象」
但這不代表你的問題因為問法不太准確就沒有討論的價值了,他的價值在於:「為什麼s1與s2不是同一個對象?」
這里做另一個小測試方便理解:
>>>a=2.5
>>>b=2.5
>>>c=b
>>>aisc
False
>>>a=2
>>>b=2
>>>c=b
>>>aisc
True
發現問題沒?其實這是在python中的一個優化:即當很短的a,b賦值很短的字元串的時候,它們的id值相同,而很長的則不會。這說明本來字元串用這種賦值方式是應該分配不同的地址的,只不過python解釋器在對值很小的int和很短的字元串的時候做了一點小優化,只分配了一個對象,讓它們id一樣了。這才是問題關鍵所在。
接著讀資料順便發現了一個a is b 但是 id(a) !=id(b) 的例子,當然看完後發現和這個問題沒關系這里不限細說明。。
希望我的回答可以幫到你:-)
Ⅹ 想學python去哪裡比較好
既然做好學習Python的准備,那麼我們就要知己知彼!作為一門入門語言進行學習,Python還是比較合適的!與其他語言想比,Python的學習甚至說安裝包就可以開始你的征程!當然,這里還是要說,一個程序員的修養絕對不能止於一門,兩門的編程語言,哪怕是出於就業的目的,我們都要多多了解相關的技術知識。
如今,Python 已經成為一種再主流不過的編程語言了。它天生麗質,易於讀寫,非常實用,從而贏得了廣泛的群眾基礎,被譽為「宇宙最好的編程語言」,被無數程序員熱烈追捧。
推薦一下免費學習的網站給你
1.Python Code Examples:
https://www.programcreek.com/python/
在這里你可以搜索到你想要學習的代碼示例,通過例子來進行模仿學習。
2.python中文學習大本營:
http://www.pythondoc.com/
這里有Flask資料大全,如果你需要,在這里可以找到你想要的幾乎所有的教程。
3.1Python 3 Mole of the Week :
https://pymotw.com/3/
3.2Python Mole of the Week:
https://pymotw.com/2/
Python 3 Mole of the Week系列文章,每篇介紹一個 Python 標准庫的使用.
4. Welcome to Python for you and me:
http://pymbook.readthedocs.io/en/latest/
主要是面對初學者的一個網站,介紹 Python的語法,項目經驗等。
5. CheckiO is a code game coders:
https://py.checkio.org/
看上去就很像一個游戲界面,事實上,當你使用的時候會發現:這就是一個游戲吧!相當於你學會編程之後用它做一個闖關游戲,通過補充代碼實現對應游戲要求,是很有趣的一個網站。
6.Reddit:
https://www.reddit.com/r/Python/
Reddit上有大量關於 Python 的鏈接,也會有不少程序員在這里進行交流,如果你有問題的話,可以在上面進行提問,或許能得到不錯的答復。
7.W3Cschool Python 微課: