sql插座
1. sql SERVER 2000 截取字元插入
update 表A
set name = left(item_name,10)
2. java序列化相關問題 查詢資料庫的時候出現這個異常,我將查詢到的結果封裝到對象中。
首先,解釋系列化知識:
Java序列化(系列化)機制可以被寫入一個位元組流的一個實例對象的狀態信息,因此它可以透過插座,或持久存儲到資料庫,或者文件系統,在需要時,根據在位元組流中的信息來重構一個相同的對象。序列化機制在Java技術具有廣泛的應用,EJB,RMI等作為依據。
實現類java.io.ObjectOutputStream中java.io.ObjectInputStream中的類的序列化機制。序列(序列化)對象,實例化一個ObjectOutputStream對象,然後調用writeObject()方法;反序列化(反序列化)時,ObjectInputStream的對象實例,然後調用readObject()方法。
高於你的錯誤在於一個或幾個沒有序列化的數據,導致沒有辦法創建一個輸出流,導致發生java.io.NotSerializableException。
序列化的原因,我的猜測是,因為你的數據裡面存在一個基於對象的數據,但對象不實現系列化。例如:如果你有一個地址欄位,這個欄位是一個類地址說明地址,這可能是全省的財產,城市,街道,等,或一些getter和setter方法,如果這個類沒有實現系列化,通常這的問題。
畢竟,沒有看到該程序,我猜,檢查程序或進一步討論的問題。
3. 電腦自動重啟
電腦自動重啟有哪些原因?如何防治?
一、軟體方面
1.病毒
"沖擊波"病毒發作時還會提示系統將在60秒後自動啟動。
木馬程序從遠程式控制制你計算機的一切活動,包括讓你的計算機重新啟動。
解決方法:清除病毒,木馬,或重裝系統。
2.系統文件損壞
系統文件被破壞,如Win2K下的KERNEL32.DLL,Win98 FONTS目錄下面的字體等系統運行時基本的文件被破壞,系統在啟動時會因此無法完成初始化而強迫重新啟動。
解決方法:覆蓋安裝或重新安裝。
3.定時軟體或計劃任務軟體起作用
如果你在"計劃任務欄"里設置了重新啟動或載入某些工作程序時,當定時時刻到來時,計算機也會再次啟動。對於這種情況,我們可以打開"啟動"項,檢查裡面有沒有自己不熟悉的執行文件或其他定時工作程序,將其屏蔽後再開機檢查。當然,我們也可以在"運行"裡面直接輸入"Msconfig"命令選擇啟動項。
二、硬體方面
1.機箱電源功率不足、直流輸出不純、動態反應遲鈍。
用戶或裝機商往往不重視電源,採用價格便宜的電源,因此是引起系統自動重啟的最大嫌疑之一。
①電源輸出功率不足,當運行大型的3D游戲等佔用CPU資源較大的軟體時,CPU需要大功率供電時,電源功率不夠而超載引起電源保護,停止輸出。電源停止輸出後,負載減輕,此時電源再次啟動。由於保護/恢復的時間很短,所以給我們的表現就是主機自動重啟。
②電源直流輸出不純,數字電路要求純直流供電,當電源的直流輸出中諧波含量過大,就會導致數字電路工作出錯,表現是經常性的死機或重啟。
③CPU的工作負載是動態的,對電流的要求也是動態的,而且要求動態反應速度迅速。有些品質差的電源動態反應時間長,也會導致經常性的死機或重啟。
④更新設備(高端顯卡/大硬碟/視頻卡),增加設備(刻錄機/硬碟)後,功率超出原配電源的額定輸出功率,就會導致經常性的死機或重啟。
解決方法:現換高質量大功率計算機電源。
2.內存熱穩定性不良、晶元損壞或者設置錯誤
內存出現問題導致系統重啟致系統重啟的幾率相對較大。
①內存熱穩定性不良,開機可以正常工作,當內存溫度升高到一定溫度,就不能正常工作,導致死機或重啟。
②內存晶元輕微損壞時,開機可以通過自檢(設置快速啟動不全面檢測內存),也可以進入正常的桌面進行正常操作,當運行一些I/O吞吐量大的軟體(媒體播放、游戲、平面/3D繪圖)時就會重啟或死機。
解決辦法:更換內存。
③把內存的CAS值設置得太小也會導致內存不穩定,造成系統自動重啟。一般最好採用BIOS的預設設置,不要自己改動。
3.CPU的溫度過高或者緩存損壞
①CPU溫度過高常常會引起保護性自動重啟。溫度過高的原因基本是由於機箱、CPU散熱不良,CPU散熱不良的原因有:散熱器的材質導熱率低,散熱器與CPU接觸面之間有異物(多為質保帖),風扇轉速低,風扇和散熱器積塵太多等等。還有P2/P3主板CPU下面的測溫探頭損壞或P4 CPU內部的測溫電路損壞,主板上的BIOS有BUG在某一特殊條件下測溫不準,CMOS中設置的CPU保護溫度過低等等也會引起保護性重啟。
②CPU內部的一、二級緩存損壞是CPU常見的故障。損壞程度輕的,還是可以啟動,可以進入正常的桌面進行正常操作,當運行一些I/O吞吐量大的軟體(媒體播放、游戲、平面/3D繪圖)時就會重啟或死機。
解決辦法:在CMOS中屏蔽二級緩存(L2)或一級緩存(L1),或更換CPU排除。
4.AGP顯卡、PCI卡(網卡、貓)引起的自動重啟
①外接卡做工不標准或品質不良,引發AGP/PCI匯流排的RESET信號誤動作導致系統重啟。
②還有顯卡、網卡松動引起系統重啟的事例。
5. 並口、串口、USB介面接入有故障或不兼容的外部設備時自動重啟
①外設有故障或不兼容,比如列印機的並口損壞,某一腳對地短路,USB設備損壞對地短路,針腳定義、信號電平不兼容等等。
②熱插拔外部設備時,抖動過大,引起信號或電源瞬間短路。
6.光碟機內部電路或晶元損壞
光碟機損壞,大部分表現是不能讀盤/刻盤。也有因為內部電路或晶元損壞導致主機在工作過程中突然重啟。光碟機本身的設計不良,FireWare有Bug。也會在讀取光碟時引起重啟。
7.機箱前面板RESET開關問題
機箱前面板RESET鍵實際是一個常開開關,主板上的RESET信號是+5V電平信號,連接到RESET開關。當開關閉合的瞬間,+5V電平對地導通,信號電平降為0V,觸發系統復位重啟,RESET開關回到常開位置,此時RESET信號恢復到+5V電平。如果RESET鍵損壞,開關始終處於閉合位置,RESET信號一直是0V,系統就無法加電自檢。當RESET開關彈性減弱,按鈕按下去不易彈起時,就會出現開關稍有振動就易於閉合。從而導致系統復位重啟。
解決辦法:更換RESET開關。
還有機箱內的RESET開關引線短路,導致主機自動重啟。
8. 主板故障
主板導致自動重啟的事例很少見。一般是與RESET相關的電路有故障;插座、插槽有虛焊,接觸不良;個別晶元、電容等元件損害。
三、其他原因
1.市電電壓不穩
①計算機的開關電源工作電壓范圍一般為170V-240V,當市電電壓低於170V時,計算機就會自動重啟或關機。
解決方法:加穩壓器(不是UPS)或130-260V的寬幅開關電源。
②電腦和空調、冰箱等大功耗電器共用一個插線板的話,在這些電器啟動的時候,供給電腦的電壓就會受到很大的影響,往往就表現為系統重啟。
解決辦法就是把他們的供電線路分開。
2.強磁干擾
不要小看電磁干擾,許多時候我們的電腦死機和重啟也是因為干擾造成的,這些干擾既有來自機箱內部CPU風扇、機箱風扇、顯卡風扇、顯卡、主板、硬碟的干擾,也有來自外部的動力線,變頻空調甚至汽車等大型設備的干擾。如果我們主機的搞干擾性能差或屏蔽不良,就會出現主機意外重啟或頻繁死機的現象。
3、交流供電線路接錯
有的用戶把供電線的零線直接接地(不走電度表的零線),導致自動重啟,原因是從地線引入干擾信號。
4.插排或電源插座的質量差,接觸不良。
電源插座在使用一段時間後,簧片的彈性慢慢喪失,導致插頭和簧片之間接觸不良、電阻不斷變化,電流隨之起伏,系統自然會很不穩定,一旦電流達不到系統運行的最低要求,電腦就重啟了。解決辦法,購買質量過關的好插座。
5. 積塵太多導致主板RESET線路短路引起自動重啟。
4. 扁平封裝和貼片封裝有啥區別
封裝大全,自己看吧!
1、BGA(ball grid array)
球形觸點陳列,表面貼裝型封裝之一。在印刷基板的背面按陳列方式製作出球形凸點用 以 代替引腳,在印刷基板的正面裝配LSI 晶元,然後用模壓樹脂或灌封方法進行密封。也 稱為凸 點陳列載體(PAC)。引腳可超過200,是多引腳LSI 用的一種封裝。 封裝本體也可做得比QFP(四側引腳扁平封裝)小。例如,引腳中心距為1.5mm 的360 引腳 BGA 僅為31mm 見方;而引腳中心距為0.5mm 的304 引腳QFP 為40mm 見方。而且BGA 不 用擔心QFP 那樣的引腳變形問題。 該封裝是美國Motorola 公司開發的,首先在攜帶型電話等設備中被採用,今後在美國有
可 能在個人計算機中普及。最初,BGA 的引腳(凸點)中心距為1.5mm,引腳數為225。現在 也有 一些LSI 廠家正在開發500 引腳的BGA。 BGA 的問題是迴流焊後的外觀檢查。現在尚不清楚是否有效的外觀檢查方法。有的認為 , 由於焊接的中心距較大,連接可以看作是穩定的,只能通過功能檢查來處理。 美國Motorola 公司把用模壓樹脂密封的封裝稱為OMPAC,而把灌封方法密封的封裝稱為
GPAC(見OMPAC 和GPAC)。
2、BQFP(quad flat package with bumper)
帶緩沖墊的四側引腳扁平封裝。QFP 封裝之一,在封裝本體的四個角設置突起(緩沖墊) 以 防止在運送過程中引腳發生彎曲變形。美國半導體廠家主要在微處理器和ASIC 等電路中 採用 此封裝。引腳中心距0.635mm,引腳數從84 到196 左右(見QFP)。
3、碰焊PGA(butt joint pin grid array) 表面貼裝型PGA 的別稱(見表面貼裝型PGA)。
4、C-(ceramic)
表示陶瓷封裝的記號。例如,CDIP 表示的是陶瓷DIP。是在實際中經常使用的記號。
5、Cerdip
用玻璃密封的陶瓷雙列直插式封裝,用於ECL RAM,DSP(數字信號處理器)等電路。帶有 玻璃窗口的Cerdip 用於紫外線擦除型EPROM 以及內部帶有EPROM 的微機電路等。引腳中 心 距2.54mm,引腳數從8 到42。在日本,此封裝表示為DIP-G(G 即玻璃密封的意思)。
6、Cerquad
表面貼裝型封裝之一,即用下密封的陶瓷QFP,用於封裝DSP 等的邏輯LSI 電路。帶有窗 口的Cerquad 用於封裝EPROM 電路。散熱性比塑料QFP 好,在自然空冷條件下可容許1. 5~ 2W 的功率。但封裝成本比塑料QFP 高3~5 倍。引腳中心距有1.27mm、0.8mm、0.65mm、 0.5mm、 0.4mm 等多種規格。引腳數從32 到368。
7、CLCC(ceramic leaded chip carrier)
帶引腳的陶瓷晶元載體,表面貼裝型封裝之一,引腳從封裝的四個側面引出,呈丁字形 。 帶有窗口的用於封裝紫外線擦除型EPROM 以及帶有EPROM 的微機電路等。此封裝也稱為 QFJ、QFJ-G(見QFJ)。
8、COB(chip on board)
板上晶元封裝,是裸晶元貼裝技術之一,半導體晶元交接貼裝在印刷線路板上,晶元與 基 板的電氣連接用引線縫合方法實現,晶元與基板的電氣連接用引線縫合方法實現,並用 樹脂覆 蓋以確保可靠性。雖然COB 是最簡單的裸晶元貼裝技術,但它的封裝密度遠不如TAB 和 倒片 焊技術。
9、DFP(al flat package)
雙側引腳扁平封裝。是SOP 的別稱(見SOP)。以前曾有此稱法,現在已基本上不用。
10、DIC(al in-line ceramic package)
陶瓷DIP(含玻璃密封)的別稱(見DIP).
11、DIL(al in-line)
DIP 的別稱(見DIP)。歐洲半導體廠家多用此名稱。
12、DIP(al in-line package)
雙列直插式封裝。插裝型封裝之一,引腳從封裝兩側引出,封裝材料有塑料和陶瓷兩種 。 DIP 是最普及的插裝型封裝,應用范圍包括標准邏輯IC,存貯器LSI,微機電路等。 引腳中心距2.54mm,引腳數從6 到64。封裝寬度通常為15.2mm。有的把寬度為7.52mm 和10.16mm 的封裝分別稱為skinny DIP 和slim DIP(窄體型DIP)。但多數情況下並不加 區分, 只簡單地統稱為DIP。另外,用低熔點玻璃密封的陶瓷DIP 也稱為cerdip(見cerdip)。
13、DSO(al small out-lint)
雙側引腳小外形封裝。SOP 的別稱(見SOP)。部分半導體廠家採用此名稱。
14、DICP(al tape carrier package)
雙側引腳帶載封裝。TCP(帶載封裝)之一。引腳製作在絕緣帶上並從封裝兩側引出。由於 利 用的是TAB(自動帶載焊接)技術,封裝外形非常薄。常用於液晶顯示驅動LSI,但多數為 定製品。 另外,0.5mm 厚的存儲器LSI 簿形封裝正處於開發階段。在日本,按照EIAJ(日本電子機 械工 業)會標准規定,將DICP 命名為DTP。
15、DIP(al tape carrier package)
同上。日本電子機械工業會標准對DTCP 的命名(見DTCP)。
16、FP(flat package)
扁平封裝。表面貼裝型封裝之一。QFP 或SOP(見QFP 和SOP)的別稱。部分半導體廠家采 用此名稱。
17、flip-chip
倒焊晶元。裸晶元封裝技術之一,在LSI 晶元的電極區製作好金屬凸點,然後把金屬凸 點 與印刷基板上的電極區進行壓焊連接。封裝的佔有面積基本上與晶元尺寸相同。是所有 封裝技 術中體積最小、最薄的一種。 但如果基板的熱膨脹系數與LSI 晶元不同,就會在接合處產生反應,從而影響連接的可 靠 性。因此必須用樹脂來加固LSI 晶元,並使用熱膨脹系數基本相同的基板材料。
18、FQFP(fine pitch quad flat package)
小引腳中心距QFP。通常指引腳中心距小於0.65mm 的QFP(見QFP)。部分導導體廠家采 用此名稱。
19、CPAC(globe top pad array carrier)
美國Motorola 公司對BGA 的別稱(見BGA)。
20、CQFP(quad fiat package with guard ring)
帶保護環的四側引腳扁平封裝。塑料QFP 之一,引腳用樹脂保護環掩蔽,以防止彎曲變 形。 在把LSI 組裝在印刷基板上之前,從保護環處切斷引腳並使其成為海鷗翼狀(L 形狀)。 這種封裝 在美國Motorola 公司已批量生產。引腳中心距0.5mm,引腳數最多為208 左右。
21、H-(with heat sink)
表示帶散熱器的標記。例如,HSOP 表示帶散熱器的SOP。
22、pin grid array(surface mount type)
表面貼裝型PGA。通常PGA 為插裝型封裝,引腳長約3.4mm。表面貼裝型PGA 在封裝的 底面有陳列狀的引腳,其長度從1.5mm 到2.0mm。貼裝採用與印刷基板碰焊的方法,因而 也稱 為碰焊PGA。因為引腳中心距只有1.27mm,比插裝型PGA 小一半,所以封裝本體可製作得 不 怎麼大,而引腳數比插裝型多(250~528),是大規模邏輯LSI 用的封裝。封裝的基材有 多層陶 瓷基板和玻璃環氧樹脂印刷基數。以多層陶瓷基材製作封裝已經實用化。
23、JLCC(J-leaded chip carrier)
J 形引腳晶元載體。指帶窗口CLCC 和帶窗口的陶瓷QFJ 的別稱(見CLCC 和QFJ)。部分半 導體廠家採用的名稱。
24、LCC(Leadless chip carrier)
無引腳晶元載體。指陶瓷基板的四個側面只有電極接觸而無引腳的表面貼裝型封裝。是 高 速和高頻IC 用封裝,也稱為陶瓷QFN 或QFN-C(見QFN)。
25、LGA(land grid array)
觸點陳列封裝。即在底面製作有陣列狀態坦電極觸點的封裝。裝配時插入插座即可。現 已 實用的有227 觸點(1.27mm 中心距)和447 觸點(2.54mm 中心距)的陶瓷LGA,應用於高速 邏輯 LSI 電路。 LGA 與QFP 相比,能夠以比較小的封裝容納更多的輸入輸出引腳。另外,由於引線的阻 抗 小,對於高速LSI 是很適用的。但由於插座製作復雜,成本高,現在基本上不怎麼使用 。預計 今後對其需求會有所增加。
26、LOC(lead on chip)
晶元上引線封裝。LSI 封裝技術之一,引線框架的前端處於晶元上方的一種結構,晶元 的 中心附近製作有凸焊點,用引線縫合進行電氣連接。與原來把引線框架布置在晶元側面 附近的 結構相比,在相同大小的封裝中容納的晶元達1mm 左右寬度。
27、LQFP(low profile quad flat package)
薄型QFP。指封裝本體厚度為1.4mm 的QFP,是日本電子機械工業會根據制定的新QFP 外形規格所用的名稱。
28、L-QUAD
陶瓷QFP 之一。封裝基板用氮化鋁,基導熱率比氧化鋁高7~8 倍,具有較好的散熱性。 封裝的框架用氧化鋁,晶元用灌封法密封,從而抑制了成本。是為邏輯LSI 開發的一種 封裝, 在自然空冷條件下可容許W3的功率。現已開發出了208 引腳(0.5mm 中心距)和160 引腳 (0.65mm 中心距)的LSI 邏輯用封裝,並於1993 年10 月開始投入批量生產。
29、MCM(multi-chip mole)
多晶元組件。將多塊半導體裸晶元組裝在一塊布線基板上的一種封裝。根據基板材料可 分 為MCM-L,MCM-C 和MCM-D 三大類。 MCM-L 是使用通常的玻璃環氧樹脂多層印刷基板的組件。布線密度不怎麼高,成本較低 。 MCM-C 是用厚膜技術形成多層布線,以陶瓷(氧化鋁或玻璃陶瓷)作為基板的組件,與使 用多層陶瓷基板的厚膜混合IC 類似。兩者無明顯差別。布線密度高於MCM-L。
MCM-D 是用薄膜技術形成多層布線,以陶瓷(氧化鋁或氮化鋁)或Si、Al 作為基板的組 件。 布線密謀在三種組件中是最高的,但成本也高。
30、MFP(mini flat package)
小形扁平封裝。塑料SOP 或SSOP 的別稱(見SOP 和SSOP)。部分半導體廠家採用的名稱。
31、MQFP(metric quad flat package)
按照JEDEC(美國聯合電子設備委員會)標准對QFP 進行的一種分類。指引腳中心距為 0.65mm、本體厚度為3.8mm~2.0mm 的標准QFP(見QFP)。
32、MQUAD(metal quad)
美國Olin 公司開發的一種QFP 封裝。基板與封蓋均採用鋁材,用粘合劑密封。在自然空 冷 條件下可容許2.5W~2.8W 的功率。日本新光電氣工業公司於1993 年獲得特許開始生產 。
33、MSP(mini square package)
QFI 的別稱(見QFI),在開發初期多稱為MSP。QFI 是日本電子機械工業會規定的名稱。
34、OPMAC(over molded pad array carrier)
模壓樹脂密封凸點陳列載體。美國Motorola 公司對模壓樹脂密封BGA 採用的名稱(見 BGA)。
35、P-(plastic)
表示塑料封裝的記號。如PDIP 表示塑料DIP。
36、PAC(pad array carrier)
凸點陳列載體,BGA 的別稱(見BGA)。
37、PCLP(printed circuit board leadless package)
印刷電路板無引線封裝。日本富士通公司對塑料QFN(塑料LCC)採用的名稱(見QFN)。引
腳中心距有0.55mm 和0.4mm 兩種規格。目前正處於開發階段。
38、PFPF(plastic flat package)
塑料扁平封裝。塑料QFP 的別稱(見QFP)。部分LSI 廠家採用的名稱。
39、PGA(pin grid array)
陳列引腳封裝。插裝型封裝之一,其底面的垂直引腳呈陳列狀排列。封裝基材基本上都 采 用多層陶瓷基板。在未專門表示出材料名稱的情況下,多數為陶瓷PGA,用於高速大規模 邏輯 LSI 電路。成本較高。引腳中心距通常為2.54mm,引腳數從64 到447 左右。 了為降低成本,封裝基材可用玻璃環氧樹脂印刷基板代替。也有64~256 引腳的塑料PG A。 另外,還有一種引腳中心距為1.27mm 的短引腳表面貼裝型PGA(碰焊PGA)。(見表面貼裝 型PGA)。
40、piggy back
馱載封裝。指配有插座的陶瓷封裝,形關與DIP、QFP、QFN 相似。在開發帶有微機的設 備時用於評價程序確認操作。例如,將EPROM 插入插座進行調試。這種封裝基本上都是 定製 品,市場上不怎麼流通。
41、PLCC(plastic leaded chip carrier)
帶引線的塑料晶元載體。表面貼裝型封裝之一。引腳從封裝的四個側面引出,呈丁字形 , 是塑料製品。美國德克薩斯儀器公司首先在64k 位DRAM 和256kDRAM 中採用,現在已經 普 及用於邏輯LSI、DLD(或程邏輯器件)等電路。引腳中心距1.27mm,引腳數從18 到84。 J 形引腳不易變形,比QFP 容易操作,但焊接後的外觀檢查較為困難。 PLCC 與LCC(也稱QFN)相似。以前,兩者的區別僅在於前者用塑料,後者用陶瓷。但現 在已經出現用陶瓷製作的J 形引腳封裝和用塑料製作的無引腳封裝(標記為塑料LCC、PC LP、P -LCC 等),已經無法分辨。為此,日本電子機械工業會於1988 年決定,把從四側引出 J 形引 腳的封裝稱為QFJ,把在四側帶有電極凸點的封裝稱為QFN(見QFJ 和QFN)。
42、P-LCC(plastic teadless chip carrier)(plastic leaded chip currier)
有時候是塑料QFJ 的別稱,有時候是QFN(塑料LCC)的別稱(見QFJ 和QFN)。部分
LSI 廠家用PLCC 表示帶引線封裝,用P-LCC 表示無引線封裝,以示區別。
43、QFH(quad flat high package)
四側引腳厚體扁平封裝。塑料QFP 的一種,為了防止封裝本體斷裂,QFP 本體製作得 較厚(見QFP)。部分半導體廠家採用的名稱。
44、QFI(quad flat I-leaded packgac)
四側I 形引腳扁平封裝。表面貼裝型封裝之一。引腳從封裝四個側面引出,向下呈I 字 。 也稱為MSP(見MSP)。貼裝與印刷基板進行碰焊連接。由於引腳無突出部分,貼裝佔有面 積小 於QFP。 日立製作所為視頻模擬IC 開發並使用了這種封裝。此外,日本的Motorola 公司的PLL IC 也採用了此種封裝。引腳中心距1.27mm,引腳數從18 於68。
45、QFJ(quad flat J-leaded package)
四側J 形引腳扁平封裝。表面貼裝封裝之一。引腳從封裝四個側面引出,向下呈J 字形 。 是日本電子機械工業會規定的名稱。引腳中心距1.27mm。
材料有塑料和陶瓷兩種。塑料QFJ 多數情況稱為PLCC(見PLCC),用於微機、門陳列、 DRAM、ASSP、OTP 等電路。引腳數從18 至84。
陶瓷QFJ 也稱為CLCC、JLCC(見CLCC)。帶窗口的封裝用於紫外線擦除型EPROM 以及 帶有EPROM 的微機晶元電路。引腳數從32 至84。
46、QFN(quad flat non-leaded package)
四側無引腳扁平封裝。表面貼裝型封裝之一。現在多稱為LCC。QFN 是日本電子機械工業 會規定的名稱。封裝四側配置有電極觸點,由於無引腳,貼裝佔有面積比QFP 小,高度 比QFP 低。但是,當印刷基板與封裝之間產生應力時,在電極接觸處就不能得到緩解。因此電 極觸點 難於作到QFP 的引腳那樣多,一般從14 到100 左右。 材料有陶瓷和塑料兩種。當有LCC 標記時基本上都是陶瓷QFN。電極觸點中心距1.27mm。
塑料QFN 是以玻璃環氧樹脂印刷基板基材的一種低成本封裝。電極觸點中心距除1.27mm 外, 還有0.65mm 和0.5mm 兩種。這種封裝也稱為塑料LCC、PCLC、P-LCC 等。
47、QFP(quad flat package)
四側引腳扁平封裝。表面貼裝型封裝之一,引腳從四個側面引出呈海鷗翼(L)型。基材有 陶 瓷、金屬和塑料三種。從數量上看,塑料封裝占絕大部分。當沒有特別表示出材料時, 多數情 況為塑料QFP。塑料QFP 是最普及的多引腳LSI 封裝。不僅用於微處理器,門陳列等數字 邏輯LSI 電路,而且也用於VTR 信號處理、音響信號處理等模擬LSI 電路。引腳中心距 有1.0mm、0.8mm、 0.65mm、0.5mm、0.4mm、0.3mm 等多種規格。0.65mm 中心距規格中最多引腳數為304。
日本將引腳中心距小於0.65mm 的QFP 稱為QFP(FP)。但現在日本電子機械工業會對QFP 的外形規格進行了重新評價。在引腳中心距上不加區別,而是根據封裝本體厚度分為 QFP(2.0mm~3.6mm 厚)、LQFP(1.4mm 厚)和TQFP(1.0mm 厚)三種。
另外,有的LSI 廠家把引腳中心距為0.5mm 的QFP 專門稱為收縮型QFP 或SQFP、VQFP。 但有的廠家把引腳中心距為0.65mm 及0.4mm 的QFP 也稱為SQFP,至使名稱稍有一些混亂 。 QFP 的缺點是,當引腳中心距小於0.65mm 時,引腳容易彎曲。為了防止引腳變形,現已 出現了幾種改進的QFP 品種。如封裝的四個角帶有樹指緩沖墊的BQFP(見BQFP);帶樹脂 保護 環覆蓋引腳前端的GQFP(見GQFP);在封裝本體里設置測試凸點、放在防止引腳變形的專 用夾 具里就可進行測試的TPQFP(見TPQFP)。 在邏輯LSI 方面,不少開發品和高可靠品都封裝在多層陶瓷QFP 里。引腳中心距最小為 0.4mm、引腳數最多為348 的產品也已問世。此外,也有用玻璃密封的陶瓷QFP(見Gerqa d)。
48、QFP(FP)(QFP fine pitch)
小中心距QFP。日本電子機械工業會標准所規定的名稱。指引腳中心距為0.55mm、0.4mm 、 0.3mm 等小於0.65mm 的QFP(見QFP)。
49、QIC(quad in-line ceramic package)
陶瓷QFP 的別稱。部分半導體廠家採用的名稱(見QFP、Cerquad)。
50、QIP(quad in-line plastic package)
塑料QFP 的別稱。部分半導體廠家採用的名稱(見QFP)。
51、QTCP(quad tape carrier package)
四側引腳帶載封裝。TCP 封裝之一,在絕緣帶上形成引腳並從封裝四個側面引出。是利 用 TAB 技術的薄型封裝(見TAB、TCP)。
52、QTP(quad tape carrier package)
四側引腳帶載封裝。日本電子機械工業會於1993 年4 月對QTCP 所制定的外形規格所用 的 名稱(見TCP)。
53、QUIL(quad in-line)
QUIP 的別稱(見QUIP)。
54、QUIP(quad in-line package)
四列引腳直插式封裝。引腳從封裝兩個側面引出,每隔一根交錯向下彎曲成四列。引腳 中 心距1.27mm,當插入印刷基板時,插入中心距就變成2.5mm。因此可用於標准印刷線路板 。是 比標准DIP 更小的一種封裝。日本電氣公司在台式計算機和家電產品等的微機晶元中采 用了些 種封裝。材料有陶瓷和塑料兩種。引腳數64。
55、SDIP (shrink al in-line package)
收縮型DIP。插裝型封裝之一,形狀與DIP 相同,但引腳中心距(1.778mm)小於DIP(2.54 mm),
因而得此稱呼。引腳數從14 到90。也有稱為SH-DIP 的。材料有陶瓷和塑料兩種。
56、SH-DIP(shrink al in-line package)
同SDIP。部分半導體廠家採用的名稱。
57、SIL(single in-line)
SIP 的別稱(見SIP)。歐洲半導體廠家多採用SIL 這個名稱。
58、SIMM(single in-line memory mole)
單列存貯器組件。只在印刷基板的一個側面附近配有電極的存貯器組件。通常指插入插 座 的組件。標准SIMM 有中心距為2.54mm 的30 電極和中心距為1.27mm 的72 電極兩種規格 。 在印刷基板的單面或雙面裝有用SOJ 封裝的1 兆位及4 兆位DRAM 的SIMM 已經在個人 計算機、工作站等設備中獲得廣泛應用。至少有30~40%的DRAM 都裝配在SIMM 里。
59、SIP(single in-line package)
單列直插式封裝。引腳從封裝一個側面引出,排列成一條直線。當裝配到印刷基板上時 封 裝呈側立狀。引腳中心距通常為2.54mm,引腳數從2 至23,多數為定製產品。封裝的形 狀各 異。也有的把形狀與ZIP 相同的封裝稱為SIP。
60、SK-DIP(skinny al in-line package)
DIP 的一種。指寬度為7.62mm、引腳中心距為2.54mm 的窄體DIP。通常統稱為DIP(見 DIP)。
61、SL-DIP(slim al in-line package)
DIP 的一種。指寬度為10.16mm,引腳中心距為2.54mm 的窄體DIP。通常統稱為DIP。
62、SMD(surface mount devices)
表面貼裝器件。偶而,有的半導體廠家把SOP 歸為SMD(見SOP)。
63、SO(small out-line)
SOP 的別稱。世界上很多半導體廠家都採用此別稱。(見SOP)。
64、SOI(small out-line I-leaded package)
I 形引腳小外型封裝。表面貼裝型封裝之一。引腳從封裝雙側引出向下呈I 字形,中心 距 1.27mm。貼裝佔有面積小於SOP。日立公司在模擬IC(電機驅動用IC)中採用了此封裝。引 腳數 26。
65、SOIC(small out-line integrated circuit)
SOP 的別稱(見SOP)。國外有許多半導體廠家採用此名稱。
66、SOJ(Small Out-Line J-Leaded Package)
J 形引腳小外型封裝。表面貼裝型封裝之一。引腳從封裝兩側引出向下呈J 字形,故此 得名。 通常為塑料製品,多數用於DRAM 和SRAM 等存儲器LSI 電路,但絕大部分是DRAM。用SO J 封裝的DRAM 器件很多都裝配在SIMM 上。引腳中心距1.27mm,引腳數從20 至40(見SIMM )。
67、SQL(Small Out-Line L-leaded package)
按照JEDEC(美國聯合電子設備工程委員會)標准對SOP 所採用的名稱(見SOP)。
68、SONF(Small Out-Line Non-Fin)
無散熱片的SOP。與通常的SOP 相同。為了在功率IC 封裝中表示無散熱片的區別,有意 增添了NF(non-fin)標記。部分半導體廠家採用的名稱(見SOP)。
69、SOF(small Out-Line package)
小外形封裝。表面貼裝型封裝之一,引腳從封裝兩側引出呈海鷗翼狀(L 字形)。材料有 塑料 和陶瓷兩種。另外也叫SOL 和DFP。
SOP 除了用於存儲器LSI 外,也廣泛用於規模不太大的ASSP 等電路。在輸入輸出端子不 超過10~40 的領域,SOP 是普及最廣的表面貼裝封裝。引腳中心距1.27mm,引腳數從8 ~44。
另外,引腳中心距小於1.27mm 的SOP 也稱為SSOP;裝配高度不到1.27mm 的SOP 也稱為 TSOP(見SSOP、TSOP)。還有一種帶有散熱片的SOP。
70、SOW (Small Outline Package(Wide-Jype))
寬體SOP。部分半導體廠家採用的名稱。
5. 如果我用一根網線連接外網 然後用一根網線連接內網的資料庫 請問這樣做能保證資料庫的安全么
不能,因為外網可以通過你的電腦連接到內網的資料庫。
象一般正規的內外分離的話有兩種方式:
1、內外網的IP地址相同,但只用一根網線,接內網的插座上,只能連接內網,拔出插到外網上時,外網無法連接到內網。但還是有風險,你電腦上的資料會被盜。
2、硬碟隔離卡,不同的的網路用不同的硬碟和網路連接設置,比如上網時,用B硬碟,外部網線的連接到網卡上,不上網時,用A硬碟,內部網線連接到網卡上。
相比之下,硬碟隔離卡比較方便,但要重新啟動生效,設置麻煩。
手動的速度快,但要手動操作。
6. Oracle插座索引是否存在
存在的
(6)sql插座擴展閱讀:oracle中怎麼判斷一個表的索引是否可用
建了索引沒好用不好用這一說,只有能不能用得上這一說法,主要要看你寫的sql里有沒有用到索引關鍵字,還有就是sql的結果占總數據量的比例,這是個復雜的判斷過程,由oracle自動完成。
如果你的不好用是指索引總是壞,那你得找一下原因,你對表的DML操作,oracle都會自動去維護這個索引,一般來說你這種情況不應該出現的,是否是因為你的磁碟不穩定造成的。
看索引是否損壞,你可以查dba_indexes.status欄位,如果不是VALID,那就是壞了。
7. 我的電腦這兩天經常會藍屏死機,懷疑和sql server 2005 service pack 3 有關
查到下面一些,希望能對你有所幫助。
電腦自動從啟應該考慮的問題如下:
一、軟體方面
1.病毒 「沖擊波」病毒發作時還會提示系統將在60秒後自動啟動。 木馬程序從遠程式控制制你計算機的一切活動,包括讓你的計算機重新啟動。 清除病毒,木馬,或重裝系統。
2.系統文件損壞 系統文件被破壞,如Win2K下的KERNEL32.DLL,Win98 FONTS目錄下面的字體等系統運行時基本的文件被破壞,系統在啟動時會因此無法完成初始化而強迫重新啟動。 解決方法:覆蓋安裝或重新安裝。
3.定時軟體或計劃任務軟體起作用 如果你在「計劃任務欄」里設置了重新啟動或載入某些工作程序時,當定時時刻到來時,計算機也會再次啟動。對於這種情況,我們可以打開「啟動」項,檢查裡面有沒有自己不熟悉的執行文件或其他定時工作程序,將其屏蔽後再開機檢查。當然,我們也可以在「運行」裡面直接輸入「Msconfig」命令選擇啟動項。
二、硬體方面
1.機箱電源功率不足、直流輸出不純、動態反應遲鈍。 用戶或裝機商往往不重視電源,採用價格便宜的電源,因此是引起系統自動重啟的最大嫌疑之一。
①電源輸出功率不足,當運行大型的3D游戲等佔用CPU資源較大的軟體時,CPU需要大功率供電時,電源功率不夠而超載引起電源保護,停止輸出。電源停止輸出後,負載減輕,此時電源再次啟動。由於保護/恢復的時間很短,所以給我們的表現就是主機自動重啟。
②電源直流輸出不純,數字電路要求純直流供電,當電源的直流輸出中諧波含量過大,就會導致數字電路工作出錯,表現是經常性的死機或重啟。
③CPU的工作負載是動態的,對電流的要求也是動態的,而且要求動態反應速度迅速。有些品質差的電源動態反應時間長,也會導致經常性的死機或重啟。
④更新設備(高端顯卡/大硬碟/視頻卡),增加設備(刻錄機/硬碟)後,功率超出原配電源的額定輸出功率,就會導致經常性的死機或重啟。 解決方法:現換高質量大功率計算機電源。
2.內存熱穩定性不良、晶元損壞或者設置錯誤 內存出現問題導致系統重啟致系統重啟的幾率相對較大。
①內存熱穩定性不良,開機可以正常工作,當內存溫度升高到一定溫度,就不能正常工作,導致死機或重啟。
②內存晶元輕微損壞時,開機可以通過自檢(設置快速啟動不全面檢測內存),也可以進入正常的桌面進行正常操作,當運行一些I/O吞吐量大 的軟體(媒體播放、游戲、平面/3D繪圖)時就會重啟或死機。 解決辦法:更換內存。
③把內存的CAS值設置得太小也會導致內存不穩定,造成系統自動重啟。一般最好採用BIOS的預設設置,不要自己改動。
3.CPU的溫度過高或者緩存損壞
①CPU溫度過高常常會引起保護性自動重啟。溫度過高的原因基本是由於機箱、CPU散熱不良,CPU散熱不良的原因有:散熱器的材質導熱率低, 散熱器與CPU接觸面之間有異物(多為質保帖),風扇轉速低,風扇和散熱器積塵太多等等。還有P2/P3主板CPU下面的測溫探頭損壞或P4 CPU 內部的測溫電路損壞,主板上的BIOS有BUG在某一特殊條件下測溫不準,CMOS中設置的CPU保護溫度過低等等也會引起保護性重啟。
②CPU內部的一、二級緩存損壞是CPU常見的故障。損壞程度輕的,還是可以啟動,可以進入正常的桌面進行正常操作,當運行一些I/O吞吐量大 的軟體(媒體播放、游戲、平面/3D繪圖)時就會重啟或死機。 解決辦法:在CMOS中屏蔽二級緩存(L2)或一級緩存(L1),或更換CPU排除。
4.AGP顯卡、PCI卡(網卡、貓)引起的自動重啟
①外接卡做工不標准或品質不良,引發AGP/PCI匯流排的RESET信號誤動作導致系統重啟。
②還有顯卡、網卡松動引起系統重啟的事例。
5. 並口、串口、USB介面接入有故障或不兼容的外部設備時自動重啟
①外設有故障或不兼容,比如列印機的並口損壞,某一腳對地短路,USB設備損壞對地短路,針腳定義、信號電平不兼容等等。
②熱插拔外部設備時,抖動過大,引起信號或電源瞬間短路。
6.光碟機內部電路或晶元損壞 光碟機損壞,大部分表現是不能讀盤/刻盤。也有因為內部電路或晶元損壞導致主機在工作過程中突然重啟。光碟機本身的設計不良,FireWare有Bug。也會在讀取光碟時引起重啟。
7.機箱前面板RESET開關問題 機箱前面板RESET鍵實際是一個常開開關,主板上的RESET信號是+5V電平信號,連接到RESET開關。當開關閉合的瞬間,+5V電平對地導通,信號電平降為0V,觸發系統復位重啟,RESET開關回到常開位置,此時RESET信號恢復到+5V電平。如果RESET鍵損壞,開關始終處於閉合位置,RESET信號一直是0V,系統就無法加電自檢。當RESET開關彈性減弱,按鈕按下去不易彈起時,就會出現開關稍有振動就易於閉合。從而導致系統復位重啟。 解決辦法:更換RESET開關。 還有機箱內的RESET開關引線短路,導致主機自動重啟。
8. 主板故障 主板導致自動重啟的事例很少見。一般是與RESET相關的電路有故障;插座、插槽有虛焊,接觸不良;個別晶元、電容等元件損害。
三、其他原因
1.市電電壓不穩
①計算機的開關電源工作電壓范圍一般為170V-240V,當市電電壓低於170V時,計算機就會自動重啟或關機。解決方法:加穩壓器(不是UPS)或130-260V的寬幅開關電源。
②電腦和空調、冰箱等大功耗電器共用一個插線板的話,在這些電器啟動的時候,供給電腦的電壓就會受到很大的影響,往往就表現為系統重啟。 解決辦法就是把他們的供電線路分開。
2.強磁干擾 不要小看電磁干擾,許多時候我們的電腦死機和重啟也是因為干擾造成的,這些干擾既有來自機箱內部CPU風扇、機箱風扇、顯卡風扇、顯卡、主板、硬碟的干擾,也有來自外部的動力線,變頻空調甚至汽車等大型設備的干擾。如果我們主機的搞干擾性能差或屏蔽不良,就會出現主機意外重啟或頻繁死機的現象。
3. 交流供電線路接錯 有的用戶把供電線的零線直接接地(不走電度表的零線),導致自動重啟,原因是從地線引入干擾信號。
4.插排或電源插座的質量差,接觸不良。 電源插座在使用一段時間後,簧片的彈性慢慢喪失,導致插頭和簧片之間接觸不良、電阻不斷變化,電流隨之起伏,系統自然會很不穩定,一旦電流達不到系統運行的最低要求,電腦就重啟了。解決辦法,購買質量過關的好插座。
5. 積塵太多導致主板RESET線路短路引起自動重啟!
你 的估計是軟體方面的問題!
8. sQl77A0h一開五孔開關怎麼接線
普通五孔插座開關的接線方式都是一樣的,如果開關作為燈具控制線,那麼零、火線下來分別接入插座N和L孔,然後從插座L跳線到開關L孔,燈泡兩線一個接入開關的L1口,另一個和零線接在一起就完成了。
2.如果開關用來控制插座,則零、火線下來,零線接入插座N口,火線接入開關L,L1接線到插座L口,就完成了。(如果不懂得區分零火線,可任意,因為交流電是不分正負的,不影響使用)
9. dbeaver的資料庫導航不見了
1、點擊窗口,選中資料庫導航,顯示出左側的資料庫導航窗口。
2、點擊帶加號的插座按鈕。
3、選中sqlite。
4、要把連接類型修改為測試,這樣資料庫導航就回來了