當前位置:首頁 » 編程語言 » python分類

python分類

發布時間: 2022-10-29 19:50:14

『壹』 python的特性是什麼

Python是一門大家都比較熟悉的一門計算機語言,也是比較簡單的一門計算機語言,相對於來說更加簡單一些,而且也是不少人進入行業內的首要選擇。
Python是一門好用又簡單易學的計算機編程語言,在近幾年中,Python受到了不少IT人士的追捧,熱度也是越來越高了,成為了我們入門首選的編程語言,為什麼呢?因為Python具有非常廣泛的應用范圍,在人工智慧、web開發之中具有非常好的應用,同時在金融分析、爬蟲等領域也具有很大的作用。
1、Python採用C語言進行開發,但是Python不再有C語言中的指針等復雜的數據類型存在。
2、Python具有很強的面向對象特性,同時也簡單化了面向對象的實現,可以消除保護類型、抽象類、介面等面向對象的元素。
3、Python代碼可以使用空格或者製表符縮進的方式分割代碼。
4、Python僅僅只有31個保留字,而且沒有分號、begin、end等標記。
5、Python是強類型的語言,變數創建之後會對應一種數據類型,出現在統一表達式中的不同類型的變數需要做類型轉換。

『貳』 請問一下python的基本概念是什麼

1.概念:Python是一種跨平台的計算機程序設計語言。 是一個高層次的結合了解釋性、編譯性、互動性和面向對象的腳本語言。最初被設計用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越多被用於獨立的、大型項目的開發。

2.Python簡介及應用領域

Web 和 Internet開發

科學計算和統計

人工智慧

桌面界面開發

軟體開發

後端開發

網路爬蟲

『叄』 分享!5種常用的Python工具

IDLE


在安裝Python時,默認也會安裝IDLE。這是最優秀的Python工具之一。它可以降低Python入門的門檻。它的主要功能包括Python Shell窗口(互動式解釋器)、自動補齊、高亮顯示語法以及基本的集成調試器。IDLE輕巧易用,方便學習。但是,它不適用於大型項目。許多程序員都將其作為最佳的Python工具。


Scikit-learn


Scikit-learn是數據科學最常使用的Python工具之一。這是一款為機器學習和數據科學而設計的Python工具。該工具主要用於處理分類、回歸、聚類、模型選擇以及預處理等任務。scikit-Learn最出色的功能是在測試數據集上執行基準測試時,表現出的驚人速度。因此,對於程序員和學生來說,Scikit-learn是最優秀的Python工具之一。


Theano


Theano是一款數據科學的Python工具,對於程序員和學生而言,這是一款非常可靠的工具。它是深度學習方面最好的Python工具,因此非常適合深度學習。Theano的設計主旨是用戶友好、模塊化、易於擴展,而且可以與Python配合使用。它能夠以最佳方式表達神經網路。Theano可以在TensorFlow和CNTK等流行的神經網路之上運行。


Selenium


Selenium是最佳的Python自動化工具之一。它適用於Python測試的自動化,常常用作Web應用程序的自動化框架。我們可以利用Selenium,通過許多編程語言(包括Java、C#、Python、ruby以及其他許多程序員和學生使用的語言)來編寫測試腳本。你還可以在Selenium中集成Junit和TestNG等工具,來管理測試用例並生成報告。


Test complete


Testcomplete是另一款非常出色的Python自動化工具。支持Web、移動和桌面自動化測試。更高級的應用需要獲得商業許可,而且它還可以幫助學生提高學業成績。Test complete還可以像機器人框架一樣執行關鍵字驅動的測試。它擁有最出色的錄制以及回放功能,非常實用。


關於分享!5種常用的Python工具,環球青藤小編就和大家分享到這里了,學習是永無止境的,學習一項技能更是受益終身,所以,只要肯努力學,什麼時候開始都不晚。如果您還想繼續了解關於python編程的學習方法及素材等內容,可以點擊本站其他文章學習。

『肆』 常用Python機器學習庫有哪些

Python作為一門理想的集成語言,將各種技術綁定在一起,除了為用戶提供更方便的功能之外,還是一個理想的粘合平台,在開發人員與外部庫的低層次集成人員之間搭建連接,以便用C、C++實現更高效的演算法
使用Python編程可以快速遷移代碼並進行改動,無須花費過多的精力在修改代碼與代碼規范上。開發者在Python中封裝了很多優秀的依賴庫,可以直接拿來使用,常見的機器學習庫如下:
1、Scikit-Learn
Scikit-Learn基於Numpy和Scipy,是專門為機器學習建造的一個Python模塊,提供了大量用於數據挖掘和分析的工具,包括數據預處理、交叉驗證、演算法與可視化演算法等一系列介面。
Scikit-Learn基本功能可分為六個部分:分類、回歸、聚類、數據降維、模型選擇、數據預處理。其中集成了大量分類、回歸、聚類功能,包括支持向量機、邏輯回歸、隨機森林、樸素貝葉斯等。
2、Orange3
Orange3是一個基於組件的數據挖掘和機器學習軟體套裝,支持Python進行腳本開發。它包含一系列的數據可視化、檢索、預處理和建模技術,具有一個良好的用戶界面,同時也可以作為Python的一個模塊使用。
用戶可通過數據可視化進行數據分析,包含統計分布圖、柱狀圖、散點圖,以及更深層次的決策樹、分層聚簇、熱點圖、MDS等,並可使用它自帶的各類附加功能組件進行NLP、文本挖掘、構建網路分析等。
3、XGBoost
XGBoost是專注於梯度提升演算法的機器學習函數庫,因其優良的學習效果及高效的訓練速度而獲得廣泛的關注。XGBoost支持並行處理,比起同樣實現了梯度提升演算法的Scikit-Learn庫,其性能提升10倍以上。XGBoost可以處理回歸、分類和排序等多種任務。
4、NuPIC
NuPIC是專注於時間序列的一個機器學習平台,其核心演算法為HTM演算法,相比於深度學習,其更為接近人類大腦的運行結構。HTM演算法的理論依據主要是人腦中處理高級認知功能的新皮質部分的運行原理。NuPIC可用於預測以及異常檢測,使用面非常廣,僅要求輸入時間序列即可。
5、Milk
Milk是Python中的一個機器學習工具包。Milk注重提升運行速度與降低內存佔用,因此大部分對性能敏感的代碼都是使用C++編寫的,為了便利性在此基礎上提供Python介面。重點提供監督分類方法,如SVMs、KNN、隨機森林和決策樹等。

『伍』 python是一種什麼類型的編程語言

Python(英國發音:/?pa?θ?n/ 美國發音:/?pa?θɑ?n/)是一種廣泛使用的解釋型、高級編程、通用型編程語言,由吉多·范羅蘇姆創造,第一版發布於1991年。可以視之為一種改良(加入一些其他編程語言的優點,如面向對象)的LISP。
Python的設計哲學強調代碼的可讀性和簡潔的語法(尤其是使用空格縮進劃分代碼塊,而非使用大括弧或者關鍵詞)。
相比於C++或Java,Python讓開發者能夠用更少的代碼表達想法。不管是小型還是大型程序,該語言都試圖讓程序的結構清晰明了。
與Scheme、Ruby、Perl、Tcl等動態類型編程語言一樣,Python擁有動態類型系統和垃圾回收功能,能夠自動管理內存使用,並且支持多種編程範式,包括面向對象、命令式、函數式和過程式編程。其本身擁有一個巨大而廣泛的標准庫。
Python 解釋器本身幾乎可以在所有的操作系統中運行。Python的其中一個解釋器CPython是用C語言編寫的、是一個由社群驅動的自由軟體,當前由Python軟體基金會管理。
Python是完全面向對象的語言。函數、模塊、數字、字元串都是對象。並且完全支持繼承、重載、派生、多重繼承,有益於增強源代碼的復用性。Python支持重載運算符,因此Python也支持泛型設計。相對於Lisp這種傳統的函數式編程語言,Python對函數式編程只提供了有限的支持。有兩個標准庫(functools, itertools)提供了與Haskell和Standard ML中類似的函數式程序設計工具。
雖然Python可能被粗略地分類為「腳本語言」,但實際上一些大規模軟體開發計劃例如Zope、Mnet及BitTorrent,Google也廣泛地使用它。
Python的支持者較喜歡稱它為一種高端動態編程語言,原因是「腳本語言」泛指僅作簡單程序設計任務的語言,如shell script、VBScript等只能處理簡單任務的編程語言,並不能與Python相提並論。
Python本身被設計為可擴展的。並非所有的特性和功能都集成到語言核心。Python提供了豐富的API和工具,以便程序員能夠輕松地使用C、C++、Cython來編寫擴展模塊。Python編譯器本身也可以被集成到其它需要腳本語言的程序內。
因此,有很多人把Python作為一種「膠水語言」使用。使用Python將其他語言編寫的程序進行集成和封裝。在Google內部的很多項目,例如Google應用服務引擎使用C++編寫性能要求極高的部分,然後用Python或Java/Go調用相應的模塊。
《Python技術手冊》的作者馬特利(Alex Martelp)說:「這很難講,不過,2004年,Python已在Google內部使用,Google召募許多Python高手,但在這之前就已決定使用Python。他們的目的是盡量使用Python,在不得已時改用C++;在操控硬體的場合使用C++,在快速開發時候使用Python。」
Python的設計哲學是「優雅」、「明確」、「簡單」。Python開發者的哲學是「用一種方法,最好是只有一種方法來做一件事」,也因此它和擁有明顯個人風格的其他語言很不一樣。在設計Python語言時,如果面臨多種選擇,Python開發者一般會拒絕花俏的語法,而選擇明確沒有或者很少有歧義的語法。這些准則被稱為「Python格言」。在Python解釋器內運行import this可以獲得完整的列表。
相關推薦:《Python教程》以上就是小編分享的關於python是一種什麼類型的編程語言的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

『陸』 python分類演算法有哪些

常見的分類演算法有:

  • K近鄰演算法

  • 決策樹

  • 樸素貝葉斯

  • SVM

  • Logistic Regression

『柒』 Python 在編程語言中是什麼地位為什麼很多大學不教 Python

作者看著網上各種數據分析的知識泛濫, 但是沒有什麼體系,初學者不知道學哪些, 不知道學多少, 不知道學多深, 單純一個python語言, 數據分析會用到那種程度, 不可能說像開發那樣去學, numpy如果不是做演算法工程師用到的知識並不多, pandas知識雜亂無章, 哪些才是最常用的功能等等, 作者不忍眾生皆苦, 決定寫一套python數據分析的全套教程, 目前已完成一部分課件的製作。需要說明的是, 作為一名數據分析師, 你應該先會一點Excel和SQL知識,相關的內容, 網上很多。但是, 即便你一點Excel和SQL都不會也不會影響這部分的學習 !目前作者整理的大綱如下:
第一章 python編程基礎
1.1 python語言概述 1.2 數據科學神器--Anaconda介紹與安裝 1.3 標准輸入輸出 1.4 變數定義與賦值 1.5 數據類型 1.6 流程式控制制語句 1.7 函數
1.8 面向對象編程 第二章 python數據清洗之numpy 2.1 核心ndarray對象的創建 2.2 ndarray對象常用的屬性和方法 2.3 ndarray對象的索引和切片 2.4 ndarray對象的分割與合並 2.5 ndarray對象的廣播(Broadcast) 2.6 numpy中的算術運算函數 2.7 numpy中的統計函數 2.8 numpy中的排序 搜索 計數 去重函數 2.9 numpy中的字元串函數 2.10 numpy中可能會用到的線性代數模塊(後期機器學習會用到一點)
第三章 數據清洗神器pandas
3.1 pandas核心對象之Series對象的創建 常用屬性和方法 3.2 pandas核心對象之DataFrame對象的創建 常用屬性和方法 3.3 DataFrame對象的列操作和行操作 3.4 DataFrame對象的索引和切片 3.5 DataFrame對象的布爾索引 3.6 數據的讀入與導出 3.7 groupby分組運算 3.8 數據合並與數據透視
第四章 數據可視化matplotlib seaborn pyecharts
4.1 包括常用圖形的繪制,略
第五章 實戰案列
5.1 拉勾網數據分析相關職位分析 5.2 boss直聘數據分析相關職位分析 5.3 珍愛網女性用戶數據分析
第六章 機器學習
機器學習部分, 簡單的演算法會講手寫, 難的就用scikit-learn實現, 可能有小夥伴說, 這是調包俠乾的, 小哥哥!小姐姐!哪有那麼多公司, 那麼多人自己干寫演算法的, 有幾個人敢說他寫的演算法比scikit-learn寫得好? 再說了, 你是數據分析師, 這些是你的工具, 解決問題的!不是一天到晚拉格朗日對偶性!先來個機器學習介紹, 然後如下:
6.1 K近鄰演算法 6.2 Kmeans演算法 6.3 決策樹 階段案列:決策樹案列(保險行業) 6.4 線性回歸 嶺回歸 Lasso回歸 6.5 邏輯回歸 6.6 樸素貝葉斯 階段案列:推薦系統(電商玩具) 6.7 隨機森林 6.8 Adaboost 6.9 梯度提升樹GBDT 6.10 極端梯度提升樹Xgboost 6.11 支持向量機SVM 6.12 神經網路 階段案例:Xgboost案例
------------------------------本節內容-----------------------------------------
python語言概述
在說python之前, 我們還是先來看看計算機軟硬體的發展歷史。
1 計算機硬體的發展歷史
第一代計算機-電子管計算機(1946-1957)
無論如何,一項技術的突破必然伴隨著其他行業的突破,簡而言之,電子計算機的出現,前提必須有電子技術的進步,否則一切都是空談!下面是我列舉出計算機硬體的發展過程中, 一些比較重要的事件。
1906年, 美國的Lee De Forest 發明了電子管。在這之前造出數字電子計算機是不可能的。這為電子計算機的發 展奠定了基礎。
1924年2月, 一個具有劃時代意義的公司成立,IBM。
1935年, IBM推出IBM 601機。 這是一台能在一秒鍾算出乘法的穿孔卡片計算機。這台機器無論在自然科學還是在商業意義上都具有重要的地位。大約造了1500台。
1937年, 英國劍橋大學的Alan M. Turing (1912-1954)出版了他的論文 ,並提出了被後人稱之為"圖靈機"的數學模型。
1937年, 美國貝爾試驗室的George Stibitz展示了用繼電器表示二進制的裝置。盡管僅僅是個展示品,但卻是世界上第一台二進制電子計算機。
1941年, Atanasoff和學生Berry完成了能解線性代數方程的計算機,取名叫"ABC"(Atanasoff-Berry Computer),用電容作存儲器,用穿孔卡片作輔助存儲器,那些孔實際上是"燒"上的。 時鍾頻率是60HZ,完成一次加法運算用時一秒。這就是ABC計算機。
1946年, 美國賓夕法尼亞大學,第一台通用電子計算機ENIAC (Electronic Numerical Integrator 和 Computer)誕生, 總工程師埃克特在當時年僅25歲。
這時的計算機的基本線路是採用電子管結構,程序從人工手編的 機器指令程序(0 1),過渡到符號語言(匯編),電子管計算機是計算工具革命性發展的開始,它所採用的進位制與程序存貯等基本技術思想,奠定了現代電子計算機技術基礎。以馮·諾依曼為代表。
第二代計算機——晶體管計算機(時間1957~1964)
電子管時代的計算機盡管已經步入了現代計算機的范疇,但其體積之大、能耗之高、故障之多、價格之貴大大制約了它的普及應用。直到晶體管被發明出來,電子計算機才找到了騰飛的起點,一發而不可收……
20世紀50年代中期,晶體管的出現使計算機生產技術得到了根本性的發展,由晶體管代替電子管作為計算機的基礎器件,用 磁芯或磁鼓作存儲器,在整體性能上,比第一代計算機有了很大的提高。
第三代計算機——中小規模集成電路計算機(時間1964~1971)
20世紀60年代中期, 計算機發展歷程隨著半導體工藝的發展,成功製造了集成電路。中小規模集成電路成為計算機的主要部件,主存儲器也漸漸過渡到 半導體存儲器,使計算機的體積更小,大大降低了計算機計算時的功耗,由於減少了 焊點和 接插件,進一步提高了計算機的可靠性。
第四代計算機——大規模和超大規模集成電路計算機(時間1971~至今)
隨著大規模集成電路的成功製作並用於計算機硬體生產過程,計算機的體積進一步縮小,性能進一步提高。集成更高的大容量半導體存儲器作為內存儲器,發展了並行技術和多機系統,出現了 精簡指令集計算機(RISC),軟體系統工程化、理論化,程序設計自動化。微型計算機在社會上的應用范圍進一步擴大,幾乎所有領域都能看到計算機的「身影」。
第五代計算機——泛指具有人工智慧的計算機(至今~未來)
目前還沒有明確地定義
2 簡述計算機軟體的發展歷史
編程語言的發展
計算機軟體系統的發展,也伴隨著編程語言的發展。計算機程序設計語言的發展,經歷了從機器語言、匯編語言到高級語言的歷程。
機器語言:簡單點說,機器本身也只認識0和1,電路無非就只有通和斷兩種狀態,對應的二進制就是二進制的1和1。
匯編語言:匯編語言只是把一些特殊的二進制用特殊的符號表示,例如,機器要傳送一個數據,假設「傳送」這個指令對應的機器碼是000101,則人們把000101用一個特殊符號,比如mov來表示,當人們要用這個指令時用mov就行,但是mov的本質還是000101,沒有脫離硬體的范圍,有可能這個指令不能在其他機器上用。
高級語言:高級語言完全脫離了硬體范疇,所有的語法更貼近人類的自然語言,人們只需要清楚高級語言的語法,寫出程序就行了,剩下的交給編譯器或者解釋器去編譯或者解釋成機器語言就行了,看,這樣就完全脫離了硬體的范疇,大大提高了程序的開發效率。接下來我們就來看看高級語言的發展,高級語言非常多,我們主要看看比較經典的幾個。
高級語言的發展
B語言與Unix
20世紀60年代,貝爾實驗室的研究員Ken Thompson(肯·湯普森)發明了B語言,並使用B編了個游戲 - Space Travel,他想玩自己這個游戲,所以他背著老闆找到了台空閑的機器 - PDP-7,但是這台機器沒有操作系統,於是Thompson著手為PDP-7開發操作系統,後來這個OS被命名為 - UNIX。
C語言
1971年,Ken Thompson(肯·湯普森)的同事D.M.Ritchie(DM里奇),也很想玩Space Travel,所以加入了Ken Thompson,合作開發UNIX,他的主要工作是改進Thompson的B語言。最終,在1972年這個新語言被稱為C,取BCPL的第二個字母,也是B的下一個字母。
C語言和Unix
1973年,C主體完成。Ken Thompson和D.M.Ritchie迫不及待的開始用C語言完全重寫了UNIX。此時編程的樂趣已經使他們完全忘記了那個「Space Travel」,一門心思的投入到了UNIX和C語言的開發中。自此,C語言和UNIX相輔相成的發展至今。
類C語言起源、歷史
C++(C plus plus Programming Language) - 1983
還是貝爾實驗室的人,Bjarne Stroustrup(本賈尼·斯特勞斯特盧普) 在C語言的基礎上推出了C++,它擴充和完善了C語言,特別是在面向對象編程方面。一定程度上克服了C語言編寫大型程序時的不足。
Python (Python Programming Language)--1991
1989年聖誕節期間,Guido van Rossum 在阿姆斯特丹,Guido van Rossum為了打發聖誕節的無趣,決心開發一個新的腳本解釋程序,做為ABC語言的一種繼承。之所以選中Python(大蟒蛇的意思)作為該編程語言的名字,是因為他是一個叫Monty Python的喜劇團體的愛好者。第一個Python的版本發布於1991年。
Java(Java Programming Language) - 1995
Sun公司的Patrick Naughton的工作小組研發了Java語言,主要成員是James Gosling(詹姆斯·高斯林)
C(C Sharp Programming Language) - 2000
Microsoft公司的Anders Hejlsberg(安德斯·海爾斯伯格)發明了C,他也是Delphi語言之父。
當然現在還有一些新語言,比如2009年Google的go語言,以及麻省理工的julia等。
3 為什麼是Python
Python有哪些優點
1 語法簡單 漂亮:我們可以說Python是簡約的語言,非常易於讀寫。在遇到問題時,我們可以把更多的注意力放在問題本身上,而不用花費太多精力在程序語言、語法上。
2 豐富而免費的庫:Python社區創造了各種各樣的Python庫。在他們的幫助下,你可以管理文檔,執行單元測試、資料庫、web瀏覽器、電子郵件、密碼學、圖形用戶界面和更多的東西。所有東西包括在標准庫,然而,除了它,還有很多其他的庫。
3 開源:Python是免費開源的。這意味著我們不用花錢,就可以共享、復制和交換它,這也幫助Python形成了豐富的社區資源,使其更加完善,技術發展更快。
4 Python既支持面向過程,也支持面向對象編程。在面向過程編程中,程序員復用代碼,在面向對象編程中,使用基於數據和函數的對象。盡管面向對象的程序語言通常十分復雜,Python卻設法保持簡潔。
5 Python兼容眾多平台,所以開發者不會遇到使用其他語言時常會遇到的困擾。
Python有哪些作用
Python是什麼都能做,但是我們學的是數據分析,我們看看在數據分析領域Python能做什麼。
數據採集:以Scrapy 為代表的各類方式的爬蟲
數據鏈接:Python有大量各類資料庫的第三方包,方便快速的實現增刪改查
數據清洗:Numpy、Pandas,結構化和非結構化的數據清洗及數據規整化的利器
數據分析:Scikit-Learn、Scipy,統計分析,科學計算、建模等
數據可視化:Matplotlib、Seaborn等等大量各類可視化的庫
所以說總結, 為什麼數據科學選的是python, 最重要就是兩個原因:
1 語法簡單漂亮
2 大量豐富免費的第三方庫

『捌』 python標准類型的分類

如果讓我們描述標准類型,我們也許會稱它們是Python的「基本內建數據對象原始類型"。「基本」是指這些類型都是Python提供的標准或核心類型。「內建」是由於這些類型是Python默認就提供的。「數據」是因為他們用於一般數據存儲。「對象」是因為對象是數據和功能的默認抽象。「原始」是因為這些類型提供的是最底層的粒度數據存儲。「類型」是因為他們就是數據類型。不過,上面這些描述實際上並沒有告訴你每個類型如何工作,以及它們能發揮什麼作用。事實上,幾個類型共享某一些的特性,比如功能的實現手段,另一些類型則在訪問數據值方面有一些共同之處。我們感興趣的還有這些類型的數據如何更新,以及它們能提供什麼樣的存儲。有3種不同的模型可以幫助我們對基本類型進行分類,每種模型都展示給我們這些類型之間的相互關系。這些模型可以幫助我們更好的理解類型之間的相互關系以及他們的工作原理。

『玖』 Python 在編程語言中是什麼地位為什麼很多大學不教 Python

python既可用於前端還可用於後端開發。
Python是一種計算機程序設計語言。是一種動態的、面向對象的腳本語言,最初被設計用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越來越多被用於獨立的、大型項目的開發。
Python在設計上堅持了清晰劃一的風格,這使得Python成為一門易讀、易維護,並且被大量用戶所歡迎的、用途廣泛的語言。
設計者開發時總的指導思想是,對於一個特定的問題,只要有一種最好的方法來解決就好了。
這在由Tim Peters寫的Python格言(稱為The Zen of Python)裡面表述為:There should be one-- and preferably only one --obvious way to do it。
這正好和Perl語言(另一種功能類似的高級動態語言)的中心思想TMTOWTDI(There's More Than One Way To Do It)完全相反。
(9)python分類擴展閱讀:

Python的設計定位:
Python的設計哲學是「優雅」、「明確」、「簡單」。因此,Perl語言中「總是有多種方法來做同一件事」的理念在Python開發者中通常是難以忍受的。
Python開發者的哲學是「用一種方法,最好是只有一種方法來做一件事」。在設計Python語言時,如果面臨多種選擇,Python開發者一般會拒絕花俏的語法,而選擇明確的沒有或者很少有歧義的語法。
由於這種設計觀念的差異,Python源代碼通常被認為比Perl具備更好的可讀性,並且能夠支撐大規模的軟體開發。這些准則被稱為Python格言。在Python解釋器內運行import this可以獲得完整的列表。
Python開發人員盡量避開不成熟或者不重要的優化。一些針對非重要部位的加快運行速度的補丁通常不會被合並到Python內。
所以很多人認為Python很慢。不過,根據二八定律,大多數程序對速度要求不高。在某些對運行速度要求很高的情況,Python設計師傾向於使用JIT技術,或者用使用C/C++語言改寫這部分程序。可用的JIT技術是PyPy。
Python是完全面向對象的語言。函數、模塊、數字、字元串都是對象。並且完全支持繼承、重載、派生、多繼承,有益於增強源代碼的復用性。
Python支持重載運算符和動態類型。相對於Lisp這種傳統的函數式編程語言,Python對函數式設計只提供了有限的支持。有兩個標准庫(functools, itertools)提供了Haskell和Standard ML中久經考驗的函數式程序設計工具。
雖然Python可能被粗略地分類為「腳本語言」(script language),但實際上一些大規模軟體開發計劃例如Zope、Mnet及BitTorrent,Google也廣泛地使用它。
Python的支持者較喜歡稱它為一種高級動態編程語言,原因是「腳本語言」泛指僅作簡單程序設計任務的語言,如shellscript、VBScript等只能處理簡單任務的編程語言,並不能與Python相提並論。
參考資料來源:搜狗網路-Python

『拾』 Python 數據可視化:分類特徵統計圖

上一課已經體驗到了 Seaborn 相對 Matplotlib 的優勢,本課將要介紹的是 Seaborn 對分類數據的統計,也是它的長項。

針對分類數據的統計圖,可以使用 sns.catplot 繪制,其完整參數如下:

本課使用演繹的方式來學習,首先理解這個函數的基本使用方法,重點是常用參數的含義。

其他的參數,根據名稱也能基本理解。

下面就依據 kind 參數的不同取值,分門別類地介紹各種不同類型的分類統計圖。

讀入數據集:

然後用這個數據集制圖,看看效果:

輸出結果:

毫無疑問,這里繪制的是散點圖。但是,該散點圖的橫坐標是分類特徵 time 中的三個值,並且用 hue='kind' 又將分類特徵插入到圖像中,即用不同顏色的的點代表又一個分類特徵 kind 的值,最終得到這些類別組合下每個記錄中的 pulse 特徵值,並以上述圖示表示出來。也可以理解為,x='time', hue='kind' 引入了圖中的兩個特徵維度。

語句 ① 中,就沒有特別聲明參數 kind 的值,此時是使用默認值 'strip'。

與 ① 等效的還有另外一個對應函數 sns.stripplot。

輸出結果:

② 與 ① 的效果一樣。

不過,在 sns.catplot 中的兩個參數 row、col,在類似 sns.stripplot 這樣的專有函數中是沒有的。因此,下面的圖,只有用 sns.catplot 才能簡潔直觀。

輸出結果:

不過,如果換一個叫角度來說,類似 sns.stripplot 這樣的專有函數,表達簡單,參數與 sns.catplot 相比,有所精簡,使用起來更方便。

仔細比較,sns.catplot 和 sns.stripplot 兩者還是稍有區別的,雖然在一般情況下兩者是通用的。

因此,不要追求某一個是萬能的,各有各的用途,存在即合理。

不過,下面的聲明請注意: 如果沒有非常的必要,比如繪制分區圖,在本課中後續都演示如何使用專有名稱的函數。

前面已經初步解釋了這個函數,為了格式完整,這里再重復一下,即 sns.catplot 中參數 kind='strip'。

如果非要將此函數翻譯為漢語,可以稱之為「條狀散點圖」。以分類特徵為一坐標軸,在另外一個坐標軸上,根據分類特徵,將該分類特徵數據所在記錄中的連續值沿坐標軸描點。

從語句 ② 的結果圖中可以看到,這些點雖然縱軸的數值有相同的,但是沒有將它們重疊。因此,我們看到的好像是「一束」散點,實際上,所有點的橫坐標都應該是相應特徵分類數據,也不要把分類特徵的值理解為一個范圍,分散開僅僅是為了圖示的視覺需要。

輸出結果:

④ 相對 ② 的圖示,在於此時同一縱軸值的都重合了——本來它們的橫軸值都是一樣的。實現此效果的參數是 jitter=0,它可以表示點的「振動」,如果默認或者 jitter=True,意味著允許描點在某個范圍振動——語句 ② 的效果;還可設置為某個 0 到 1 的浮點,表示許可振動的幅度。請對比下面的操作。

輸出結果:

語句 ② 中使用 hue='kind' 參數向圖中提供了另外一個分類特徵,但是,如果感覺圖有點亂,還可以這樣做:

輸出結果:

dodge=True 的作用就在於將 hue='kind' 所引入的特徵數據分開,相對 ② 的效果有很大差異。

並且,在 ⑤ 中還使用了 paletter='Set2' 設置了色彩方案。

sns.stripplot 函數中的其他有關參數,請讀者使用幫助文檔了解。

此函數即 sns.catplot 的參數 kind='swarm'。

輸出結果:

再繪制一張簡單的圖,一遍研究這種圖示的本質。

輸出結果:

此圖只使用了一個特徵的數據,簡化表象,才能探究 sns.swarmplot 的本質。它同樣是將該特徵中的數據,依據其他特徵的連續值在圖中描點,並且所有點在默認情況下不彼此重疊——這方面與 sns.stripplot 一樣。但是,與之不同的是,這些點不是隨機分布的,它們經過調整之後,均勻對稱分布在分類特徵數值所在直線的兩側,這樣能很好地表示數據的分布特點。但是,這種方式不適合「大數據」。

sns.swarmplot 的參數似乎也沒有什麼太特殊的。下面使用幾個,熟悉一番基本操作。

在分類維度上還可以再引入一個維度,用不同顏色的點表示另外一種類別,即使用 hue 參數來實現。

輸出結果:

這里用 hue = 'smoker' 參數又引入了一個分類特徵,在圖中用不同顏色來區分。

如果覺得會 smoker 特徵的值都混在一起有點亂,還可以使用下面方式把他們分開——老調重彈。

輸出結果:

生成此效果的參數就是 dodge=True,它的作用就是當 hue 參數設置了特徵之後,將 hue 的特徵數據進行分類。

sns.catplot 函數的參數 kind 可以有三個值,都是用於繪制分類的分布圖:

下面依次對這三個專有函數進行闡述。

熱點內容
我的世界國際服一進伺服器就崩 發布:2025-01-06 05:30:53 瀏覽:395
雲主機網站源碼 發布:2025-01-06 05:30:40 瀏覽:88
整數指數冪的運演算法則 發布:2025-01-06 05:22:32 瀏覽:362
php數據緩存技術 發布:2025-01-06 05:22:24 瀏覽:516
jdk卸載linux 發布:2025-01-06 05:21:48 瀏覽:665
昂克賽拉哪個配置最走量 發布:2025-01-06 05:13:03 瀏覽:425
稅務uk密碼是什麼密碼 發布:2025-01-06 05:10:45 瀏覽:41
羅蘭音響什麼配置較好 發布:2025-01-06 05:09:17 瀏覽:794
怎麼查看伺服器是虛擬還是實體機 發布:2025-01-06 05:09:16 瀏覽:46
清除手機緩存軟體 發布:2025-01-06 04:56:29 瀏覽:329