當前位置:首頁 » 編程語言 » pythonlogistic回歸

pythonlogistic回歸

發布時間: 2022-10-23 01:49:04

㈠ 誰會多項式logistic回歸分析

不知道你想基於什麼軟體進行 多項式logistic回歸分析,這里提供兩種:

1、python

使用statsmodels包中的MNLogit模塊


2、Minitab

㈡ Python3.4機器學習的Logistic回歸演算法的stocGradAscent1(dataMatrix, classLabels, numIter=150)問題求解

把del那句改成del(list(dataIndex)[randIndex])

㈢ 在邏輯回歸中,odds ratio怎麼用python計算

實際上完成邏輯回歸是相當簡單的,首先指定要預測變數的列,接著指定模型用於做預測的列,剩下的就由演算法包去完成了。
本例中要預測的是admin列,使用到gre、gpa和虛擬變數prestige_2、prestige_3、prestige_4。prestige_1作為基準,所以排除掉,以防止多元共線性(multicollinearity)和引入分類變數的所有虛擬變數值所導致的陷阱(mmy variable trap)。

程序縮進如圖所示

㈣ 想學編程,python怎麼樣,猿來教育有這個課程嗎

內容比較簡單,課程也不錯,對於編程小白很容易學,很適合「懶人」學習,就是那種自學容易三分鍾熱度,懶得到處找課程,下軟體,花錢省事。一千塊錢對於內容來說個人覺得不值,因為有一點點編程的基礎,自學下來是沒問題的。但風變編程的課程講解做得不錯,會用通俗易懂的方式給你講,如果編程的東西對你很難理解,又想學,這也不失為一種方法。最後,Python的免費課程很容易找,軟體也很容易下載,如果不想花錢可以自學,但沒必要去摔別人的飯碗,一千塊錢個人覺得貴,不值,但對有的人來說一千塊錢就是零花錢,花錢省事也是他們的選擇。和其他語言區別對於一個特定的問題,只要有一種最好的方法來解決這在由Tim Peters寫的Python格言(稱為The Zen of Python)裡面表述為:There should be one-- and preferably only one --obvious way to do it。這正好和Perl語言(另一種功能類似的高級動態語言)的中心思想TMTOWTDI(There's More Than One Way To Do It)完全相反。Python的設計哲學是「優雅」、「明確」、「簡單」。因此,Perl語言中「總是有多種方法來做同一件事」的理念在Python開發者中通常是難以忍受的。Python開發者的哲學是「用一種方法,最好是只有一種方法來做一件事」。在設計Python語言時,如果面臨多種選擇,Python開發者一般會拒絕花俏的語法,而選擇明確的沒有或者很少有歧義的語法。由於這種設計觀念的差異,Python源代碼通常被認為比Perl具備更好的可讀性,並且能夠支撐大規模的軟體開發。這些准則被稱為Python格言。在Python解釋器內運行import this可以獲得完整的列表。

㈤ python數據統計分析

1. 常用函數庫

  scipy包中的stats模塊和statsmodels包是python常用的數據分析工具,scipy.stats以前有一個models子模塊,後來被移除了。這個模塊被重寫並成為了現在獨立的statsmodels包。

 scipy的stats包含一些比較基本的工具,比如:t檢驗,正態性檢驗,卡方檢驗之類,statsmodels提供了更為系統的統計模型,包括線性模型,時序分析,還包含數據集,做圖工具等等。

2. 小樣本數據的正態性檢驗

(1) 用途

 夏皮羅維爾克檢驗法 (Shapiro-Wilk) 用於檢驗參數提供的一組小樣本數據線是否符合正態分布,統計量越大則表示數據越符合正態分布,但是在非正態分布的小樣本數據中也經常會出現較大的W值。需要查表來估計其概率。由於原假設是其符合正態分布,所以當P值小於指定顯著水平時表示其不符合正態分布。

 正態性檢驗是數據分析的第一步,數據是否符合正態性決定了後續使用不同的分析和預測方法,當數據不符合正態性分布時,我們可以通過不同的轉換方法把非正太態數據轉換成正態分布後再使用相應的統計方法進行下一步操作。

(2) 示例

(3) 結果分析

 返回結果 p-value=0.029035290703177452,比指定的顯著水平(一般為5%)小,則拒絕假設:x不服從正態分布。

3. 檢驗樣本是否服務某一分布

(1) 用途

 科爾莫戈羅夫檢驗(Kolmogorov-Smirnov test),檢驗樣本數據是否服從某一分布,僅適用於連續分布的檢驗。下例中用它檢驗正態分布。

(2) 示例

(3) 結果分析

 生成300個服從N(0,1)標准正態分布的隨機數,在使用k-s檢驗該數據是否服從正態分布,提出假設:x從正態分布。最終返回的結果,p-value=0.9260909172362317,比指定的顯著水平(一般為5%)大,則我們不能拒絕假設:x服從正態分布。這並不是說x服從正態分布一定是正確的,而是說沒有充分的證據證明x不服從正態分布。因此我們的假設被接受,認為x服從正態分布。如果p-value小於我們指定的顯著性水平,則我們可以肯定地拒絕提出的假設,認為x肯定不服從正態分布,這個拒絕是絕對正確的。

4.方差齊性檢驗

(1) 用途

 方差反映了一組數據與其平均值的偏離程度,方差齊性檢驗用以檢驗兩組或多組數據與其平均值偏離程度是否存在差異,也是很多檢驗和演算法的先決條件。

(2) 示例

(3) 結果分析

 返回結果 p-value=0.19337536323599344, 比指定的顯著水平(假設為5%)大,認為兩組數據具有方差齊性。

5. 圖形描述相關性

(1) 用途

 最常用的兩變數相關性分析,是用作圖描述相關性,圖的橫軸是一個變數,縱軸是另一變數,畫散點圖,從圖中可以直觀地看到相關性的方向和強弱,線性正相關一般形成由左下到右上的圖形;負面相關則是從左上到右下的圖形,還有一些非線性相關也能從圖中觀察到。

(2) 示例

(3) 結果分析

 從圖中可以看到明顯的正相關趨勢。

6. 正態資料的相關分析

(1) 用途

 皮爾森相關系數(Pearson correlation coefficient)是反應兩變數之間線性相關程度的統計量,用它來分析正態分布的兩個連續型變數之間的相關性。常用於分析自變數之間,以及自變數和因變數之間的相關性。

(2) 示例

(3) 結果分析

 返回結果的第一個值為相關系數表示線性相關程度,其取值范圍在[-1,1],絕對值越接近1,說明兩個變數的相關性越強,絕對值越接近0說明兩個變數的相關性越差。當兩個變數完全不相關時相關系數為0。第二個值為p-value,統計學上,一般當p-value<0.05時,可以認為兩變數存在相關性。

7. 非正態資料的相關分析

(1) 用途

 斯皮爾曼等級相關系數(Spearman』s correlation coefficient for ranked data ),它主要用於評價順序變數間的線性相關關系,在計算過程中,只考慮變數值的順序(rank, 值或稱等級),而不考慮變數值的大小。常用於計算類型變數的相關性。

(2) 示例

(3) 結果分析

 返回結果的第一個值為相關系數表示線性相關程度,本例中correlation趨近於1表示正相關。第二個值為p-value,p-value越小,表示相關程度越顯著。

8. 單樣本T檢驗

(1) 用途

 單樣本T檢驗,用於檢驗數據是否來自一致均值的總體,T檢驗主要是以均值為核心的檢驗。注意以下幾種T檢驗都是雙側T檢驗。

(2) 示例

(3) 結果分析

 本例中生成了2列100行的數組,ttest_1samp的第二個參數是分別對兩列估計的均值,p-value返回結果,第一列1.47820719e-06比指定的顯著水平(一般為5%)小,認為差異顯著,拒絕假設;第二列2.83088106e-01大於指定顯著水平,不能拒絕假設:服從正態分布。

9. 兩獨立樣本T檢驗

(1) 用途

 由於比較兩組數據是否來自於同一正態分布的總體。注意:如果要比較的兩組數據不滿足方差齊性, 需要在ttest_ind()函數中添加參數equal_var = False。

(2) 示例

(3) 結果分析

 返回結果的第一個值為統計量,第二個值為p-value,pvalue=0.19313343989106416,比指定的顯著水平(一般為5%)大,不能拒絕假設,兩組數據來自於同一總結,兩組數據之間無差異。

10. 配對樣本T檢驗

(1) 用途

 配對樣本T檢驗可視為單樣本T檢驗的擴展,檢驗的對象由一群來自正態分布獨立樣本更改為二群配對樣本觀測值之差。它常用於比較同一受試對象處理的前後差異,或者按照某一條件進行兩兩配對分別給與不同處理的受試對象之間是否存在差異。

(2) 示例

(3) 結果分析

 返回結果的第一個值為統計量,第二個值為p-value,pvalue=0.80964043445811551,比指定的顯著水平(一般為5%)大,不能拒絕假設。

11. 單因素方差分析

(1) 用途

 方差分析(Analysis of Variance,簡稱ANOVA),又稱F檢驗,用於兩個及兩個以上樣本均數差別的顯著性檢驗。方差分析主要是考慮各組之間的平均數差別。

 單因素方差分析(One-wayAnova),是檢驗由單一因素影響的多組樣本某因變數的均值是否有顯著差異。

 當因變數Y是數值型,自變數X是分類值,通常的做法是按X的類別把實例成分幾組,分析Y值在X的不同分組中是否存在差異。

(2) 示例

(3) 結果分析

 返回結果的第一個值為統計量,它由組間差異除以組間差異得到,上例中組間差異很大,第二個返回值p-value=6.2231520821576832e-19小於邊界值(一般為0.05),拒絕原假設, 即認為以上三組數據存在統計學差異,並不能判斷是哪兩組之間存在差異 。只有兩組數據時,效果同 stats.levene 一樣。

12. 多因素方差分析

(1) 用途

 當有兩個或者兩個以上自變數對因變數產生影響時,可以用多因素方差分析的方法來進行分析。它不僅要考慮每個因素的主效應,還要考慮因素之間的交互效應。

(2) 示例

(3) 結果分析

 上述程序定義了公式,公式中,"~"用於隔離因變數和自變數,」+「用於分隔各個自變數, ":"表示兩個自變數交互影響。從返回結果的P值可以看出,X1和X2的值組間差異不大,而組合後的T:G的組間有明顯差異。

13. 卡方檢驗

(1) 用途

 上面介紹的T檢驗是參數檢驗,卡方檢驗是一種非參數檢驗方法。相對來說,非參數檢驗對數據分布的要求比較寬松,並且也不要求太大數據量。卡方檢驗是一種對計數資料的假設檢驗方法,主要是比較理論頻數和實際頻數的吻合程度。常用於特徵選擇,比如,檢驗男人和女人在是否患有高血壓上有無區別,如果有區別,則說明性別與是否患有高血壓有關,在後續分析時就需要把性別這個分類變數放入模型訓練。

 基本數據有R行C列, 故通稱RC列聯表(contingency table), 簡稱RC表,它是觀測數據按兩個或更多屬性(定性變數)分類時所列出的頻數表。

(2) 示例

(3) 結果分析

 卡方檢驗函數的參數是列聯表中的頻數,返回結果第一個值為統計量值,第二個結果為p-value值,p-value=0.54543425102570975,比指定的顯著水平(一般5%)大,不能拒絕原假設,即相關性不顯著。第三個結果是自由度,第四個結果的數組是列聯表的期望值分布。

14. 單變數統計分析

(1) 用途

 單變數統計描述是數據分析中最簡單的形式,其中被分析的數據只包含一個變數,不處理原因或關系。單變數分析的主要目的是通過對數據的統計描述了解當前數據的基本情況,並找出數據的分布模型。

 單變數數據統計描述從集中趨勢上看,指標有:均值,中位數,分位數,眾數;從離散程度上看,指標有:極差、四分位數、方差、標准差、協方差、變異系數,從分布上看,有偏度,峰度等。需要考慮的還有極大值,極小值(數值型變數)和頻數,構成比(分類或等級變數)。

 此外,還可以用統計圖直觀展示數據分布特徵,如:柱狀圖、正方圖、箱式圖、頻率多邊形和餅狀圖。

15. 多元線性回歸

(1) 用途

 多元線性回歸模型(multivariable linear regression model ),因變數Y(計量資料)往往受到多個變數X的影響,多元線性回歸模型用於計算各個自變數對因變數的影響程度,可以認為是對多維空間中的點做線性擬合。

(2) 示例

(3) 結果分析

 直接通過返回結果中各變數的P值與0.05比較,來判定對應的解釋變數的顯著性,P<0.05則認為自變數具有統計學意義,從上例中可以看到收入INCOME最有顯著性。

16. 邏輯回歸

(1) 用途

 當因變數Y為2分類變數(或多分類變數時)可以用相應的logistic回歸分析各個自變數對因變數的影響程度。

(2) 示例

(3) 結果分析

 直接通過返回結果中各變數的P值與0.05比較,來判定對應的解釋變數的顯著性,P<0.05則認為自變數具有統計學意義。

㈥ 線性模型-分類模型

線性模型也可用於分類問題。我們首先來看二分類。我們可以利用下面的公式預測:

y^=w[0]x[0]+w[1]x[1]+...+w[p]*x[p]+b>0

這個公式與線性回歸的公式非常相似,但我們沒有返回特徵的加權求和,而是為預測設置了閾值(0)。如果函數值小於0,我們就預測類別-1,如果函數值大於0,我們就預測類別+1。對於所有用於分類的線性模型,這個預測規則都是通用的。同樣,有很多不同的方法來找出系數(w)和截距(b)。
對於用於回歸的線性模型,輸出y^是特徵的線性函數,是直線、平面或超平面(對於更高維的數據集)。對於用於分類的線性模型, 決策邊界 是輸入的線性函數。換句話說,(二元)線性分類器是利用直線、平面或超平面來分開兩個類別的分類器。
學習線性模型有很多種演算法。這些演算法的區別在於以下兩點:
1.系數和截距的特定組合對訓練數據擬合好壞的度量方法;
2.是否使用正則化,以及使用哪種正則化方法。
不同的演算法使用不同的方法來度量「對訓練集擬合好壞」。由於數學上的技術原因,不可能調節w和b使得演算法產生的誤分類數量最少。對於我們的目的,以及對於許多有用而言,上面第一點(稱為 損失函數 )的選擇並不重要。
最常見的兩種線性分類演算法是 Logistic回歸(logistic regression) 線性支持向量機(linear support vector machine,線性SVM)

Python version:3.7.1 (default, Dec 10 2018, 22:54:23) [MSC v.1915 64 bit (AMD64)]
pandas version:0.23.4
matplotlib version:3.0.2
Numpy version:1.15.4
Scipy version:1.1.0
IPython version:7.2.0
scikit-learn version:0.20.1

對於LogisticRegression和LinearSVC,決定正則化強度的權衡參數叫作C。C值越大,對應的正則化越弱。換句話說,如果參數C值較大,那麼LogisticRegression和LinearSVC將盡可能將訓練集擬合到最好,而如果C值較小,那麼模型更強調使系數向量(w)接近於0。
參數C的作用還有另一個有趣之處。較小的C值可以讓演算法盡量適應「大多數」數據點,而較大的C值強調每個數據點都分類正確的重要性。
mglearn.plots.plot_linear_svc_regularization()

Training set score:0.953
Test set score:0.958
C=1的默認值給出了相當好的性能,在訓練集和測試集上都達到95%的精度。但由於訓練集和測試集的性能非常接近,所以模型很可能是欠擬合的。我們嘗試增大C來擬合一個更靈活的模型:

Training set score:0.972
Test set score:0.965
使用C=100可以得到更高的訓練集精度,也得到了稍高的測試集精度,這也證實了我們的直覺,即更復雜的模型應該性能更好。

Training set score:0.934
Test set score:0.930
最後,看一下正則化參數C取三個不同的值模型學到的系數:

LogisticRegression模型默認應用L2正則化。更強的正則化使的系數更趨向於0,但系數永遠不會正好等於0。進一步觀察圖像,還可以第3個系數那裡發現有趣之處,這個系數是「平均周長」(mean perimeter)。C=100和C=1時這個系數為正,其絕對值比C=1時還要大。在解釋這樣的模型時,系數可以告訴我們某個特徵與哪個類別有關。例如,人們可能會認為高「紋理錯誤」(texture error)特徵與「惡性」樣本有關。但「平均周長」系數的正負號發生變化,說明較大的「平均周長」可以被當作「良性」的指標或「惡性」的指標,具體取決於我們考慮的是哪個模型。這也說明,對線性模型系數的解釋應該始終持保留態度。
如果想要一個可解釋性更強的模型,使用L1正則化可能更好,因為它約束模型只使用少數幾個特徵:

Training accuracy of l1 logreg with C=0.001:0.91
Test accuracy of l1 logreg with C=0.001:0.92
Training accuracy of l1 logreg with C=1.000:0.96
Test accuracy of l1 logreg with C=1.000:0.96
Training accuracy of l1 logreg with C=100.000:0.99
Test accuracy of l1 logreg with C=100.000:0.98

將二分類演算法推廣到多分類演算法的一種常見方法是「一對多餘」(one-vs.-rest)方法。在「一對多餘」方法中,對每個類別都學習一個二分類模型,將這個類別與所有其他類別盡量分開,這樣就生成了與類別格式一樣多的二分類偶像。在測試點上運行所有二分類器來進行預測。在對應類別上分數最高的分類器「勝出」,將這個類別標簽返回作為預測結果。
每個類別都對應一個二類分類器,這樣每個類別都有一個系數(w)向量與一個截距(b)。
我們將「一對多餘」方法應用在一個簡單的三分類數據集上。我們用到了一個二維數據集,每個類別的數據都是從一個高斯分布中采樣得出的:

在上面的數據集上訓練一個LinearSVC分類器:

Coefficient shape: (3, 2)
Intercept shape: (3,)
我們看到,coef_的形狀是(3,2),說明coef_每行包含三個類別之一的系數向量,每列包含某個特徵(這個數據集有2個特徵)對應的系數值。現在intercetp_是一維數組,保存每個類別的截距,我們將這3個二分類器給出的直線可視化:

你可以看到,訓練集中所有屬於類別0的點都在類別0對應的直線上方,這說明它們位於這個二分類器屬於「類別0」的那一側。屬於類別0的點位於與類別2對應的直線上方,這說明它們被類別2的二分類器劃為「其餘」。屬於類別0的點位於與類別1對應的直線左側,這說明類別1的二元分類器將它們劃為「其餘」。因此,這一區域的所有點都會被最終分類器劃為類別0(類別0的分類器的分類置信方程的結果大於0,其他兩個類別對應的結果小於0)。
但圖像中間的三角形區域屬於哪一個類別呢,3個分類器都將這一區域內的點劃為「其餘」。這里的點應該應該劃歸到哪一個類別呢?答案是分類方程結果最大的那個類別,即最接近的那條線對應的類別。

線性模型的主要參數是正則化參數,在回歸模型中叫作alpha,在LinearSVC和LogisticRegression中叫作C。alpha值較大或C值較小,說明模型比較簡單。特別是對於回歸模型而言,調節這些參數非常重要。通常在對數尺度上對C和alpha進行搜索。你還需要確定的是用L1正則化還是L2正則化。如果你假定只有幾個特徵是真正重要的,那麼你應該用的是L1正則化,否則默認使用L2正則化。如果模型的可解釋性很重要的話,使用L1也會有幫助。由於L1隻用到幾個特徵,所以更容易解釋哪些特徵對模型時重要的,以及這些特徵的作用。
線性模型的訓練速度非常快,預測速度也很快。這種模型可以推廣到非常大的數據集,對稀疏數據也很有效。如果你的數據包含數十萬甚至上百萬個樣本,你可能需要研究使用LogisticRegression和Ridge模型的solver='sag'選項,在處理大型數據時,這一選項比默認值要更快。其他選項還有SGDClassifier類和SGDRegressor類,它們對線性模型實現了可擴展性更強的版本。
線性模型的另一個優點在於,利用我們之前見過的用於回歸和分類的公式,理解如何進行預測是相對比較容易的。不幸的是,往往並不完全清楚系數為什麼是這樣的。如果你的數據集中包含高度相關的特徵,這一問題尤為突出。在這種情況下,可能很難對系數做出解釋。
如果特徵數量大於樣本數量,線性模型的表現通常都很好。它也常用於非常大的數據集,只是尤為訓練其他模型並不可行。但在更低維的空間中,其他模型的泛化性能可能更好。

㈦ 人工智慧學什麼

作為一名計算機專業的教育工作者,我來回答一下這個問題。

首先,人工智慧專業屬於計算機大類專業之一,雖然是新興專業,但是由於當前人工智慧領域的發展前景比較廣闊,同時一系列人工智慧技術也進入到了落地應用的階段,所以當前人工智慧專業也是熱點專業之一。

人工智慧專業有三個特點,其一是多學科交叉,涉及到計算機、數學、控制學、經濟學、神經學、語言學等諸多學科,因此整體的知識量還是比較大的,其二是學習難度較大,人工智慧本身的知識體系尚處在完善當中,很多領域還有待突破,其三是實踐場景要求高。

基於這三個特點,要想在本科階段有較好的學習效果,要有針對性的解決方案。針對於多學科交叉的情況,在大一期間一定要多做加法,尤其要重視編程語言的學習,基於編程語言來打開計算機技術大門,進而學習機器學習,而機器學習則被稱為是打開人工智慧技術大門的鑰匙。

其三是要重視為自己營造一個較好的交流和實踐場景,這對於學習效果有較大的影響,建議在大一、大二期間積極參加人工智慧相關的課題組。在選擇課題組的時候,要考慮到自己的興趣愛好、課題周期、實踐資源等因素,從這個角度來看,學校的科研資源對於人工智慧專業的同學有較大的影響。

如果有互聯網、大數據、人工智慧等方面的問題,或者是考研方面的問題,都可以私信我!

很榮幸曾經參加過一次江蘇省人工智慧論壇,論壇上認真聆聽了行業大佬周志華教授的報告,受益匪淺,首先呢,如果你是在校大學生,想要以後從事人工智慧專業相關工作,我這里給你分享下 南京大學人工智慧學院院長周志華教授 曾經在論壇上分享的南京大學人工智慧專業本科生教育培養大綱的相關課程。

首先是基礎數學部分:

數學分析、高等數學、高等代數、概率論與數理統計、最優化方法、數理邏輯。

其次是學科基礎課程:

人工智慧導引、數據結構與演算法分析、程序設計基礎、人工智慧程序設計、機器學習導論、知識表示與處理、模式識別與計算機視覺、自然語言處理、數字系統設計基礎、操作系統。

專業方向課程:

泛函分析、數字信號處理、高級機器學習、計算方法、控制理論方法、機器人學導論、多智能體系統、分布式與並行計算。

專業選修課課程:

數學建模、矩陣計算、隨機過程、組合數學。博弈論及其應用、時間序列分析、編譯原理、隨機演算法、資料庫概論。

這是南京大學人工智慧學院本科生四年的課程安排,看起來課程非常多,但這是一個培養體系,現在國內只有南京大學針對人工智慧專業開設了如此系統的培養方案,專業涉及人工智慧的各個領域方向。學生可以根據自己的興趣愛好,選擇想要學習的領域方向。

如果你已經畢業,想要轉行從事人工智慧行業,那麼下面這套課程可能比較適合你:

1.莫煩python教程(網路可搜): 莫煩python有很多專欄,可以學習到python基礎、以及人工智慧相關的軟體框架教程,包括相關人工智慧相關的一些實戰小項目。

2.吳恩達機器學習(網易雲課堂): 人工智慧機器學習理論部分,非常適合零基礎的小白學習

3.吳恩達卷積神經網路(網易雲課堂): 人工智慧深度學習理論部分,非常適合零基礎的小白學習

4.李飛飛CS231n(網易雲課堂): 人工智慧深度學習和機器學習理論,適合有一定基礎的學習者。

5.吳恩達cs229(blibli): 人工智慧深度學習和機器學習理論,適合有一定基礎的學習者。

這些基礎課程學會了,可能就算是跨入了半個門檻,當然面試的時候還欠缺實戰經驗,於是你可以去kaggle或者天池參加一些比賽,有了這些比賽經驗,簡歷上也算是多了一塊實戰經驗,增加了你的面試成功率。最後,不要參加什麼培訓機構區培訓,既花錢又學不到什麼東西,最後畢業還會給你簡歷造假,得不償失,我給你推薦的這些課程絕對比市面上99.99%的培訓機構課程靠譜!

接下來文章會側重在以下幾方面

1、零基礎如何進行人工智慧的自學(以找工作為目的),包括路徑規劃,怎麼學等等。

2、我的個人感悟,關於轉行、工作、創業、希望能給大家一些啟發。

3、好的學習資源分享

先說一下個人背景,一本,經濟學畢業,上學時從未學過編程。我這里指的零基礎指的是,沒有編程基礎、沒有數學基礎(數學需要一些基本的,如果沒有,後續也會幫助大家的)。

剛畢業第一年時,迷茫,不知道做什麼。

第一階段:邊工作邊自學爬蟲,失敗

畢業一年後,覺得編程可能是自己想要的,所以開始自學編程。

最開始學的是爬蟲,python語言。每天學6個小時,一周五到六天。學了4個月後,去面了五六家企業,沒有成功。原因是爬蟲的知識夠,可是計算機的基礎太薄弱。什麼演算法、計算機網路這些,統統沒學。因為我當時是完全自學,沒有人帶,導致我也不知道要學這些。第一階段,失敗,說實話,有點氣餒,那可是每天沒日沒夜的學習啊,最後卻換來一場空。可是生活還得繼續,怨天尤人有什麼用。

第二階段:邊工作邊自學人工智慧,成功

面試失敗後,考慮了要把編程基礎學一下再去面試,還是學點別的。我的決定是學人工智慧,當時對這個比較感興趣。好了,又是學了半年多,每天學6個小時,一周6天。從機器學習學到深度學習再學回機器學習。面試,成功地去公司從事機器學習深度學習方面的基礎工作。不過實力肯定沒有那些編程出身,數學、統計出身的人強,所以很多時候也是邊學邊做,打打雜。

其實我說的很簡單很輕松的樣子,但其中的艱辛只有自己是最清楚。所以我很希望通過我未來經驗學習的分享,幫助大家少走一些彎路。

第三階段:自己干

現在,已從公司辭職,自己開發網站,做社群,開網店。就是覺得,其實編程也只是我的一個工具,這個人就是比較喜歡自己做點事情,編程挺累的,哈哈哈。如果大家有什麼合作的好點子,也歡迎隨時來找我哦。

十問十答:

1、零基礎轉行學編程可以嗎?可以,要做好吃苦的准備。學習是個漫長的過程,你上班的話,能否保證一定時間的學習呢,這個是你要問自己的。我也是邊工作邊學習,不同的是,我工作很清閑,所以我基本可以在上班時間學習。如果你還在上學,恭喜你這是你最好的機會了。

2、該自學還是去培訓班?我覺得自學就夠了,培訓班真是又貴又水。這是我進過培訓班的朋友告訴我的。其實你工作之後會發現,很多東西都是要自學的。如果你連自學都沒辦法自學的話,你又怎麼能工作。而且,自學的效率會更高,當然前提是路徑不能錯。

3、轉行編程,就業率怎麼樣?說實話,如果你不是編程出身的,要轉行編程其實是比較難的,畢竟人家4年的正統學習不是白學的。但這不意味著就沒辦法。找准目標,規劃好路徑,學習最必要的知識,這樣就有機會。但是,請做好學完仍找不到工作的心理准備。

4、最理想的自學環境是怎麼樣的?清晰的學習路徑+自學+交流討論的環境+有人指導

5、人工智慧零基礎可以學嗎?可以,但是比一般轉行編程的要難,因為要自學的東西更多,要求的門檻也會更高。這個後續會著重講到。

6、學人工智慧需要數學嗎?不要因為數學而望而切步,數學是需要的,但沒有要求的高不可攀,通過必要的學習,是可以達到入門水準的。

7、以前沒接觸過編程,怎麼辦?可以學習python,這真的是一門對零基礎的人來說很友好的語言了,其他的我不懂。

8、一般轉行編程的周期要多久?按我跟我周邊朋友的經驗來看。一周5-6天,一天6小時學習時間,4-7個月,這應該是比較正常的。

9、我是怎麼堅持下來的?期間有很多次想要放棄,有的時候是真的看不懂,也沒人教,純自學,安裝個工具有什麼時候就要安裝半天,不多說,都是淚啊。你的慾望有多強烈,就能有多堅持。

10、現在學編程還來得及嗎?永遠都來得及,學編程不一定是為了好工作,它更是一個全新的世界,你會發現很多對自己有幫助的東西。就算以後你不做這個,我相信這個學習的過程也會有所收獲。

這是我之後會寫的文章的大概目錄,大家可以參考一下。

以下系列是暫定的,一篇文章可能會寫成好幾篇。這個系列不僅僅以學習為目的,目的是為了達到機器學習的工作入門標准。並不簡單,但努力就有可能。網上的教程我看了很多,路徑大部分都沒有錯。只是我覺得第一,太貴,明明網上有很多免費的更好的資源。第二,練習的量遠遠不夠達到能去找工作的標准。

目錄:

零基礎自學人工智慧系列(1):機器學習的最佳學習路徑規劃(親身經驗)

零基礎自學人工智慧系列(2):機器學習的知識准備(數學與python,附學習資源)

零基礎自學人工智慧系列(3):機器學習的知識准備(數學篇詳解)

零基礎自學人工智慧系列(4):機器學習的知識准備(python篇詳解)

零基礎自學人工智慧系列(5):機器學習的理論學習規劃(附資源)

零基礎自學人工智慧系列(6):深度學習的理論學習規劃(附資源)

零基礎自學人工智慧系列(7):機器學習的實戰操作(附資源和代碼)

零基礎自學人工智慧系列(8):深度學習的實戰操作(附資源和代碼)

零基礎自學人工智慧系列(9):找工作篇,需加強的部分(類似數據結構與演算法)

最後,我希望我能給大家樹立一些信心。不管你現在處於什麼水平,只要肯努力,什麼都有可能的。

首先我們需要一定的數學基礎,如:高數、線性代數、概率論、統計學等等。很多人可能要問,我學習人工智慧為什麼要有數學基礎呢?二者看似毫不相干,實則不然。線性代數能讓我們了解如何將研究對象形象化,概率論能讓我們懂得如何描述統計規律,此外還有許多其他數學科目,這些數學基礎能讓我們在學習人工智慧的時候事半功倍。

1、學習並掌握一些數學知識

高等數學是基礎中的基礎,一切理工科都需要這個打底,數據挖掘、人工智慧、模式識別此類跟數據打交道的又尤其需要多元微積分運算基礎

線性代數很重要,一般來說線性模型是你最先要考慮的模型,加上很可能要處理多維數據,你需要用線性代數來簡潔清晰的描述問題,為分析求解奠定基礎

概率論、數理統計、隨機過程更是少不了,涉及數據的問題,不確定性幾乎是不可避免的,引入隨機變數順理成章,相關理論、方法、模型非常豐富。很多機器學習的演算法都是建立在概率論和統計學的基礎上的,比如貝葉斯分類器、高斯隱馬爾可夫鏈。

再就是優化理論與演算法,除非你的問題是像二元一次方程求根那樣有現成的公式,否則你將不得不面對各種看起來無解但是要解的問題,優化將是你的GPS為你指路

有以上這些知識打底,就可以開拔了,針對具體應用再補充相關的知識與理論,比如說一些我覺得有幫助的是數值計算、圖論、拓撲,更理論一點的還有實/復分析、測度論,偏工程類一點的還有信號處理、數據結構。

2、掌握經典機器學習理論和演算法

如果有時間可以為自己建立一個機器學習的知識圖譜,並爭取掌握每一個經典的機器學習理論和演算法,我簡單地總結如下:

1) 回歸演算法:常見的回歸演算法包括最小二乘法(OrdinaryLeast Square),邏輯回歸(Logistic Regression),逐步式回歸(Stepwise Regression),多元自適應回歸樣條(MultivariateAdaptive Regression Splines)以及本地散點平滑估計(Locally Estimated Scatterplot Smoothing);

2) 基於實例的演算法:常見的演算法包括 k-Nearest Neighbor(KNN), 學習矢量量化(Learning Vector Quantization, LVQ),以及自組織映射演算法(Self-Organizing Map , SOM);

3) 基於正則化方法:常見的演算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及彈性網路(Elastic Net);

4) 決策樹學習:常見的演算法包括:分類及回歸樹(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 隨機森林(Random Forest), 多元自適應回歸樣條(MARS)以及梯度推進機(Gradient Boosting Machine, GBM);

5) 基於貝葉斯方法:常見演算法包括:樸素貝葉斯演算法,平均單依賴估計(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);

6) 基於核的演算法:常見的演算法包括支持向量機(SupportVector Machine, SVM), 徑向基函數(Radial Basis Function ,RBF), 以及線性判別分析(Linear Discriminate Analysis ,LDA)等;

7) 聚類演算法:常見的聚類演算法包括 k-Means演算法以及期望最大化演算法(Expectation Maximization, EM);

8) 基於關聯規則學習:常見演算法包括 Apriori演算法和Eclat演算法等;

9) 人工神經網路:重要的人工神經網路演算法包括:感知器神經網路(PerceptronNeural Network), 反向傳遞(Back Propagation), Hopfield網路,自組織映射(Self-OrganizingMap, SOM)。學習矢量量化(Learning Vector Quantization, LVQ);

10) 深度學習:常見的深度學習演算法包括:受限波爾茲曼機(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷積網路(Convolutional Network), 堆棧式自動編碼器(Stacked Auto-encoders);

11) 降低維度的演算法:常見的演算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回歸(Partial Least Square Regression,PLS), Sammon映射,多維尺度(Multi-Dimensional Scaling, MDS), 投影追蹤(ProjectionPursuit)等;

12) 集成演算法:常見的演算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆疊泛化(Stacked Generalization, Blending),梯度推進機(GradientBoosting Machine, GBM),隨機森林(Random Forest)。

3、掌握一種編程工具,比如Python

一方面Python是腳本語言,簡便,拿個記事本就能寫,寫完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab雖然包也多,但是效率是這四個裡面最低的。

4、了解行業最新動態和研究成果,比如各大牛的經典論文、博客、讀書筆記、微博微信等媒體資訊。

5、買一個GPU,找一個開源框架,自己多動手訓練深度神經網路,多動手寫寫代碼,多做一些與人工智慧相關的項目。

6、選擇自己感興趣或者工作相關的一個領域深入下去

人工智慧有很多方向,比如NLP、語音識別、計算機視覺等等,生命有限,必須得選一個方向深入的專研下去,這樣才能成為人工智慧領域的大牛,有所成就。

再回答第二個問題,人工智慧到底是不是一項技術?

根據網路給的定義,人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的還能的理論、方法、技術及應用系統的一門新的技術科學。

網路關於人工智慧的定義詳解中說道:人工智慧是計算機的一個分支,二十世紀七十年代以來被稱為世界三大尖端技術之一(空間技術、能源技術、人工智慧)。也被認為是二十一世紀三大尖端技術(基因工程、納米科學、人工智慧)之一。這是因為近三十年來它獲得了迅速的發展,在很多學科領域都獲得了廣泛應用,並取得了豐碩的成果,人工智慧已逐步成為一個獨立的分支,無論在理論和實踐上都已自成一個系統。

綜上,從定義上講,人工智慧是一項技術。

希望能幫到你。

人工智慧需要學習的主要內容包括:數學基礎課學科基礎課,包括程序設計基礎、數據結構、人工智慧導論、計算機原理、 數字電路 、系統控制等;專業選修課,比如 神經網路 、深度學習以及認知科學、神經科學、計算金融、計算生物學、計算語言學等交叉課程。




一、人工智慧專業學什麼

1.認知與神經科學課程群

具體課程:認知心理學、神經科學基礎、人類的記憶與學習、語言與思維、計算神經工程

2.人工智慧倫理課程群

具體課程:《人工智慧、 社會 與人文》、《人工智慧哲學基礎與倫理》

3.科學和工程課程群

新一代人工智慧的發展需要腦科學、神經科學、認知心理學、信息科學等相關學科的實驗科學家和理論科學家的共同努力,尋找人工智慧的突破點,同時必須要以嚴謹的態度進行科學研究,讓人工智慧學科走在正確、 健康 的發展道路上。

4.先進機器人學課程群

具體課程:《先進機器人控制》、《認知機器人》、,《機器人規劃與學習》、《仿生機器人》

5.人工智慧平台與工具課程群

具體課程:《群體智能與自主系統》《無人駕駛技術與系統實現》《 游戲 設計與開發》《計算機圖形學》《虛擬現實與增強現實》。

6.人工智慧核心課程群

具體課程:《人工智慧的現代方法I》《問題表達與求解》、《人工智慧的現代方法II》《機器學習、自然語言處理、計算機視覺等》。

二、人工智慧專業培養目標及要求

以培養掌握人工智慧理論與工程技術的專門人才為目標,學習機器學習的理論和方法、深度學習框架、工具與實踐平台、自然語言處理技術、語音處理與識別技術、視覺智能處理技術、國際人工智慧專業領域最前沿的理論方法,培養人工智慧專業技能和素養,構建解決科研和實際工程問題的專業思維、專業方法和專業嗅覺。

探索 實踐適合中國高等人工智慧人才培養的教學內容和教學方法,培養中國人工智慧產業的應用型人才。

三、人工智慧專業簡介

人工智慧專業是中國高校人計劃設立的專業,旨在培養中國人工智慧產業的應用型人才,推動人工智慧一級學科建設。2018年4月,教育部在研究制定《高等學校引領人工智慧創新行動計劃》,並研究設立人工智慧專業,進一步完善中國高校人工智慧學科體系。2019年3月,教育部印發了《教育部關於公布2018年度普通高等學校本科專業備案和審批結果的通知》,根據通知,全國共有35所高校獲首批「人工智慧」新專業建設資格。

2020年3月3日,教育部公布2019年度普通高等學校本科專業備案和審批結果,「人工智慧」專業成為熱門。

人工智慧是一個綜合學科,其本身涉及很多方面,比如神經網路、機器識別、機器視覺、機器人等,因此,我們想要學好整個人工智慧是很不容易的。

首先我們需要一定的數學基礎,如:高數、線性代數、概率論、統計學等等。很多人可能要問,我學習人工智慧為什麼要有數學基礎呢?二者看似毫不相干,實則不然。線性代數能讓我們了解如何將研究對象形象化,概率論能讓我們懂得如何描述統計規律,此外還有許多其他數學科目,這些數學基礎能讓我們在學習人工智慧的時候事半功倍。

然後我們需要的就是對演算法的累積,比如人工神經網路、遺傳演算法等。人工智慧的本身還是通過演算法對生活中的事物進行計算模擬,最後做出相應操作的一種智能化工具,演算法在其中扮演的角色非常重要,可以說是不可或缺的一部分。

最後需要掌握和學習的就是編程語言,畢竟演算法的實現還是需要編程的,推薦學習的有Java以及Python。如果以後想往大數據方向發展,就學習Java,而Python可以說是學習人工智慧所必須要掌握的一門編程語言。當然,只掌握一門編程語言是不夠的,因為大多數機器人的模擬都是採用的混合編程模式,即採用多種編程軟體及語言組合使用,在人工智慧方面一般使用的較多的有匯編和C++,此外還有MATLAB、VC++等,總之一句話,編程是必不可少的一項技能,需要我們花費大量時間和精力去掌握。

人工智慧現在發展得越來越快速,這得益於計算機科學的飛速發展。可以預料到,在未來,我們的生活中將隨處可見人工智慧的產品,而這些產品能為我們的生活帶來很大的便利,而人工智慧行業的未來發展前景也是十分光明的。所以,選擇人工智慧行業不會錯,但正如文章開頭所說,想入行,需要我們下足功夫,全面掌握這個行業所需要的技能才行。

,首先呢,如果你是在校大學生,想要以後從事人工智慧專業相關工作,我這里給你分享下 南京大學人工智慧學院院長周志華教授 曾經在論壇上分享的南京大學人工智慧專業本科生教育培養大綱的相關課程。

首先是基礎數學部分:

人工智慧亦稱智械、機器智能,指由人製造出來的機器所表現出來的智能。通常人工智慧是指通過普通計算機程序來呈現人類智能的技術。通過醫學、神經科學、機器人學及統計學等的進步,有些預測則認為人類的無數職業也逐漸被人工智慧取代。

㈧ Logistic函數(sigmoid函數)

Logistic函數的表示形式如下:

它的函數圖像如下,由於函數圖像很像一個「S」型,所以該函數又叫 sigmoid 函數。

滿足的性質:

1.對稱性,關於(0,0.5)中心對稱

2.邏輯斯諦方程即微分方程

最早logistic函數是皮埃爾·弗朗索瓦·韋呂勒在1844或1845年在研究它與人口增長的關系時命名的。廣義Logistic曲線可以模仿一些情況人口增長( P )的 S 形曲線。起初階段大致是 指數增長 ;然後隨著開始變得飽和,增加變慢;最後,達到成熟時增加停止。

當一個物種遷入到一個新生態系統中後,其數量會發生變化。假設該物種的起始數量小於環境的最大容納量,則數量會增長。該物種在此生態系統中有天敵、食物、空間等資源也不足(非理想環境),則增長函數滿足邏輯斯諦方程,圖像呈S形,此方程是描述在資源有限的條件下種群增長規律的一個最佳數學模型。在以下內容中將具體介紹邏輯斯諦方程的原理、生態學意義及其應用。

Logistic regression (邏輯回歸)是當前業界比較常用的機器學習方法,用於估計某種事物的可能性。之前在經典之作《數學之美》中也看到了它用於廣告預測,也就是根據某廣告被用戶點擊的可能性,把最可能被用戶點擊的廣告擺在用戶能看到的地方,然後叫他「你點我啊!」用戶點了,你就有錢收了。這就是為什麼我們的電腦現在廣告泛濫的原因了。

還有類似的某用戶購買某商品的可能性,某病人患有某種疾病的可能性啊等等。這個世界是隨機的(當然了,人為的確定性系統除外,但也有可能有雜訊或產生錯誤的結果,只是這個錯誤發生的可能性太小了,小到千萬年不遇,小到忽略不計而已),所以萬物的發生都可以用可能性或者幾率(Odds)來表達。「幾率」指的是某事物發生的可能性與不發生的可能性的比值。

Logistic regression可以用來回歸,也可以用來分類,主要是二分類。它不像SVM直接給出一個分類的結果,Logistic Regression給出的是這個樣本屬於正類或者負類的可能性是多少,當然在多分類的系統中給出的是屬於不同類別的可能性,進而通過可能性來分類。

假設我們的樣本是{ x , y},y是0或者1,表示正類或者負類, x 是我們的m維的樣本特徵向量。那麼這個樣本 x 屬於正類,也就是y=1的「概率」可以通過下面的邏輯函數來表示:

這里的 θ 是模型參數,也就是回歸系數,σ是sigmoid函數。這樣y=0的「概率」就是:

考查邏輯斯蒂回歸模型的特點,一個事件的幾率(oods)是指這件事發生的概率與不發生概率的比值,如果事件發生的概率是p,那麼該事件的幾率是p/(1-p),該事件的對數幾率(log odds)或者logit函數是

對於邏輯斯蒂回歸而言,可以得到如下的對數幾率

這就是說,在邏輯斯蒂回歸模型中,輸出y=1的對數幾率是輸入x的線性函數,或者說,輸出y=1的對數幾率是由輸入x的線性函數表示的模型,即邏輯斯蒂回歸模型。換句話說,y就是我們的關系變數,例如她喜不喜歡你,與多個因素有關,比如你的人品,你的長相,你是否有錢等。我們把這些因素表示成變數x 1 , x 2 ,…, x m ,那麼這個女生是怎麼考慮這些因素的呢,每個人心理其實都有一桿秤,例如有人比較看重你的人品,人品的權重是0.8,;也有人比較看重你有錢,有錢的權重設置成0.7等等。我們把這些對應於x 1 , x 2 ,…, x m 的權值叫做回歸系數,表達為θ 1 , θ 2 ,…, θ m 。他們的加權和就是你在心目中的得分。

在參數學習時,可以用極大似然估計方法求解。假設我們有n個獨立的訓練樣本{( x 1 , y 1 ) ,( x 2 , y 2 ),…, ( x n , y n )},y={0, 1}。那每一個觀察到的樣本( x i , y i )出現的概率是

對於整個樣本集,每個樣本的出現都是獨立的,n個樣本出現的似然函數為(n個樣本的出現概率是他們各自的概率乘積)

那麼上述的似然函數就是模型的代價函數(cost function),我們要求的參數就是θ*。我們稍微對上式進行轉換

對L(θ)的極大值,得到θ的估計值。問題變成了以對數似然函數為木匾函數的最優化問題。用L(θ)對θ求導,得到

無法解析求解的,所以一般使用迭代的方法求解,通常採用梯度下降法和擬牛頓法。

上面介紹的是兒分類的模型,用於二類分類。可以將其推廣為多項邏輯斯蒂回歸模型(multi-nominal regression model),用於多分類,假設離散隨機變數Y的取值是{1,2,3,...,K}那麼多項邏輯斯蒂回歸的模型是

同理,二項邏輯斯蒂回歸的參數估計的方法也可以推廣到多項邏輯斯蒂回歸。

[1]. 機器學習演算法與Python實踐之(七)邏輯回歸(Logistic Regression)

[2].《統計學習方法》 李航 著

㈨ 0基礎學習python怎麼入門呢

鏈接:http://pan..com/s/1VFYbfZcE5a808W7ph9-qDQ

提取碼:238d

零基礎學python課程。Python是目前最流行的動態腳本語言之一。本課程由淺入深,全面、系統地介紹了使用Python進行開發的各種知識和技巧。 包括Python環境的安裝和配置、Python的基本語法、模塊和函數、內置數據結構、字元串和文件的處理、正則表達式的使用、異常的捕獲和處理、面向對象的語言特性和設計、Python的資料庫編程、Tkinter GUI庫的使用、HTML應用、XML應用、Django網頁開發框架的使用、測試驅動開發模式應用、Python中的進程和線程、Python系統管理、網路編程、Python圖像處理、Python語言的擴展和嵌入以及Windows下Python開發等。

課程目錄:

python語言的特點

python的發展歷史與版本

python的安裝

python程序的書寫規則

基礎數據類型

變數的定義和常用操作

序列的概念

字元串的定義和使用

......

熱點內容
域環境搭建文件伺服器 發布:2024-12-29 00:17:40 瀏覽:178
linux創建進程 發布:2024-12-29 00:10:22 瀏覽:406
給相機加密 發布:2024-12-29 00:08:19 瀏覽:545
我的世界手機版起床戰爭伺服器 發布:2024-12-29 00:08:10 瀏覽:308
c語言演算法書籍 發布:2024-12-28 23:56:11 瀏覽:517
冰箱壓縮機冰堵 發布:2024-12-28 23:34:32 瀏覽:705
java版的微信 發布:2024-12-28 23:19:20 瀏覽:453
安卓手機怎麼恢復原來的圖像 發布:2024-12-28 22:55:42 瀏覽:765
安卓怎麼下載蘋果的游戲 發布:2024-12-28 22:48:23 瀏覽:664
java的excel導入導出 發布:2024-12-28 22:41:55 瀏覽:688