當前位置:首頁 » 編程語言 » python多線程下載圖片

python多線程下載圖片

發布時間: 2022-10-11 03:20:13

① 如何用python做爬蟲

1)首先你要明白爬蟲怎樣工作。

想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。

在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。

突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。

好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。

那麼在python里怎麼實現呢?
很簡單

import Queue

initial_page = "初始化頁"

url_queue = Queue.Queue()
seen = set()

seen.insert(initial_page)
url_queue.put(initial_page)

while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的url
store(current_url) #把這個url代表的網頁存儲
for next_url in extract_urls(current_url): #提取把這個url里鏈向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break

寫得已經很偽代碼了。

所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。

2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。

問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。

通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example

注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]

好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。

3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了...

那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?

我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)

考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。

代碼於是寫成

#slave.py

current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)

store(current_url);
send_to_master(to_send)

#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()

initial_pages = "www.renmingribao.com"

while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)

好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。

但是如果附加上你需要這些後續處理,比如

有效地存儲(資料庫應該怎樣安排)

有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)

有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛...

及時更新(預測這個網頁多久會更新一次)

如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,
「路漫漫其修遠兮,吾將上下而求索」。

所以,不要問怎麼入門,直接上路就好了:)

② 用python爬蟲下載煎蛋網上的妹子圖片顯示主站強制斷開連接是什麼問題啊

人家是防爬行的。你先找一個fiddler,然後自己上去瀏覽,同時抓包。根據抓包結果分析它的防盜鏈的辦法。比如使用ref, 使用cookie, 使用javascript, 隨機地址,防並發下載,驗證碼,使用特殊HTTP方法等等。防盜是有代價的,通常網站還是用防多線程下載實現的。

你用爬蟲下載的時候,最好不要用多線程。這樣會給網站很大的壓力。單線程已經很快了,為什麼還要暴力爬行。

③ python3 做一個多線程下載文件的程序 多線程問題

可以用is_active來判斷。
不過你可以預分配文件空間,直接寫,主要不沖突就行了。

④ python多線程的一些問題

#隨便寫了下沒有驗證有問題追問
importurllib
importthreading
classDownPic(threading.Thread):
def__init__(self,url,savePath):
self.url=url
self.savePath=savePath
defreporthook(self,bk,bs,size):
print"Downloading%.2f%%"%(bk*bs/size*100),sys.stdout.write(" "),
defgetPic(self,url=self.url,savePath=self.savePath):
urllib.urlretrieve(url,savePath,self.reporthook)
defrun(self):
self.getPic()

if__name__=="__main__":
urlList={1,2,3,4,5}#replacewithyoururlList
savePath="d:/1.jpg"#replacewithyoursavePath
forurlinurlList:
down=DownPic(url,savePath)
down.start()

⑤ python如何實現文件的下載,請盡量詳細,高分!!!

import os,urllib.request,re
os.chdir(r'd:')

data = urllib.request.urlopen(url).read()
with open(filename, 'wb') as f:
f.write(data)

url就是你要下載的文件鏈接,filename就是下載後保存的文件名。這段代碼是把文件下載在d盤根目錄下,你可以自己修改。

不過是單線程的,想要多線程下載,比較復雜,我沒有試過,這個下載小文件還是沒有問題的。

⑥ python爬蟲下載圖片速度很慢如何解決,具體點,新手

下載慢這個很難判斷啥原因,而且你沒把代碼貼出來,你又沒說爬蟲是自己寫的還是用第三方成熟庫,很可能你沒使用多線程來下載操作。

⑦ python多線程有什麼作用

線程在程序中是獨立的、並發的執行流。與分隔的進程相比,進程中線程之間的隔離程度要小,它們共享內存、文件句柄和其他進程應有的狀態。
因為線程的劃分尺度小於進程,使得多線程程序的並發性高。進程在執行過程中擁有獨立的內存單元,而多個線程共享內存,從而極大地提高了程序的運行效率。
線程比進程具有更高的性能,這是由於同一個進程中的線程都有共性多個線程共享同一個進程的虛擬空間。線程共享的環境包括進程代碼段、進程的公有數據等,利用這些共享的數據,線程之間很容易實現通信。
操作系統在創建進程時,必須為該進程分配獨立的內存空間,並分配大量的相關資源,但創建線程則簡單得多。因此,使用多線程來實現並發比使用多進程的性能要高得多。
總結起來,使用多線程編程具有如下幾個優點:

  • 進程之間不能共享內存,但線程之間共享內存非常容易。

  • 操作系統在創建進程時,需要為該進程重新分配系統資源,但創建線程的代價則小得多。因此,使用多線程來實現多任務並發執行比使用多進程的效率高。

  • Python語言內置了多線程功能支持,而不是單純地作為底層操作系統的調度方式,從而簡化了 Python 的多線程編程。

  • 在實際應用中,多線程是非常有用的。比如一個瀏覽器必須能同時下載多張圖片;一個 Web 伺服器必須能同時響應多個用戶請求;圖形用戶界面(GUI)應用也需要啟動單獨的線程,從主機環境中收集用戶界面事件……總之,多線程在實際編程中的應用是非常廣泛的。

⑧ python怎麼一次性下載多個文件

我覺得最簡單的辦法藉助celery分布式下載,或者手寫多線程、多進程進行文件下載。

⑨ 用python寫的一個下載瀏覽器圖片的代碼,不知道哪出錯了,執行不了

你去把類的知識好好看看,先創建對象,再調用方法

⑩ python多線程作用

總結起來,使用多線程編程具有如下幾個優點:
進程之間不能共享內存,但線程之間共享內存非常容易。
操作系統在創建進程時,需要為該進程重新分配系統資源,但創建線程的代價則小得多。因此,使用多線程來實現多任務並發執行比使用多進程的效率高。
Python 語言內置了多線程功能支持,而不是單純地作為底層操作系統的調度方式,從而簡化了 Python 的多線程編程。

在實際應用中,多線程是非常有用的。比如一個瀏覽器必須能同時下載多張圖片;一個 Web 伺服器必須能同時響應多個用戶請求;圖形用戶界面(GUI)應用也需要啟動單獨的線程,從主機環境中收集用戶界面事件……總之,多線程在實際編程中的應用是非常廣泛的。

熱點內容
怎樣搭建米家智能家居伺服器 發布:2024-12-22 11:20:36 瀏覽:995
我的世界工藝伺服器傳送點怎麼搞 發布:2024-12-22 10:56:30 瀏覽:909
exprlinux 發布:2024-12-22 10:55:19 瀏覽:698
你知道甲魚密碼是多少嗎 發布:2024-12-22 10:26:32 瀏覽:812
我的世界國服伺服器開服 發布:2024-12-22 10:09:55 瀏覽:544
標題編譯策略 發布:2024-12-22 10:04:45 瀏覽:223
android開發xml 發布:2024-12-22 10:00:20 瀏覽:64
sql伺服器名稱什麼時候能寫ip 發布:2024-12-22 09:53:19 瀏覽:130
域控制伺服器怎麼設置ip 發布:2024-12-22 09:43:23 瀏覽:884
csvreaderpython 發布:2024-12-22 09:43:13 瀏覽:770