python靜態類成員
① 如何在python中定義靜態變數
Python使用函數默認值實現函數靜態變數的方法,具體方法如下:
一、Python函數默認值
Python函數默認值的使用可以在函數調用時寫代碼提供方便,很多時候我們只要使用默認值就可以了。 所以函數默認值在python中用到的很多,尤其是在類中間,類的初始化函數中一幫都會用到默認值。 使用類時能夠方便的創建類,而不需要傳遞一堆參數。
只要在函數參數名後面加上 」=defalut_value」,函數默認值就定義好了。有一個地方需要注意的是,有默認值的參數必須在函數參數列表的最後,不允許將沒有默認值的參數放在有默認值的參數後,因為如果你那樣定義的話,解釋器將不知道如何去傳遞參數。
先來看一段示例代碼:
def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):
while True:
ok = raw_input(prompt)
if ok in ('y', 'ye', 'yes'): return True
if ok in ('n', 'no', 'nop', 'nope'): return False
retries = retries - 1
if retries < 0: raise IOError, 'refusenik user'
print complaint
你調用上面的函數時,可以修改重試次數和輸出的提示語言,如果你比較懶得話,那麼什麼都不用改。
二、python使用函數默認值來實現函數靜態變數的功能
Python中是不支持靜態變數的,但是我們可以通過函數的默認值來實現靜態變數的功能。
當函數的默認值是內容是可變的類時,類的內容可變,而類的名字沒變。(相當於開辟的內存區域沒有變,而其中內容可以變化)。
這是因為python中函數的默認值只會被執行一次,(和靜態變數一樣,靜態變數初始化也是被執行一次。)這就是他們的共同點。
再來看下面的程序片段:
def f(a, L=[]):
L.append(a)
return L
print f(1)
print f(2)
print f(3)
print f(4,['x'])
print f(5)
其輸出結果是:
[1]
[1, 2]
[1, 2, 3]
['x', 4]
[1, 2, 3, 5]
前面的好理解,為什麼最後 「print f(5)」的輸出是 「[1, 2, 3, 5]」呢?
這是因為 「print f(4,['x'])」時,默認變數並沒有被改變,因為默認變數的初始化只是被執行了一次(第一次使用默認值調用),初始化執行開辟的內存區(我們可以稱之為默認變數)沒有被改變,所以最後的輸出結果是「[1, 2, 3, 5]」。
② python 為什麼要使用靜態方法
Python使用靜態方法類似函數工具使用,一般盡量少用靜態方法。
Python的靜態方法和類成員方法都可以被類或實例訪問,兩者概念不容易理清,但還是有區別的:
1)靜態方法無需傳入self參數,類成員方法需傳入代表本類的cls參數;
2)從第1條,靜態方法是無法訪問實例變數的,而類成員方法也同樣無法訪問實例變數,但可以訪問類變數;
3)靜態方法有點像函數工具庫的作用,而類成員方法則更接近類似Java面向對象概念中的靜態方法。
③ Python該怎麼入門
Python是一種代表簡單主義思想的語言。閱讀一個良好的Python程序就感覺像是在讀英語一樣。它使你能夠專注於解決問題而不是去搞明白語言本身。
易學:Python極其容易上手,因為Python有極其簡單的說明文檔 [9] 。
易讀、易維護:風格清晰劃一、強制縮進
用途廣泛
速度快:Python 的底層是用 C 語言寫的,很多標准庫和第三方庫也都是用 C 寫的,運行速度非常快。 [7]
免費、開源:Python是FLOSS(自由/開放源碼軟體)之一。使用者可以自由地發布這個軟體的拷貝、閱讀它的源代碼、對它做改動、把它的一部分用於新的自由軟體中。FLOSS是基於一個團體分享知識的概念。
高層語言:用Python語言編寫程序的時候無需考慮諸如如何管理你的程序使用的內存一類的底層細節。
可移植性:由於它的開源本質,Python已經被移植在許多平台上(經過改動使它能夠工作在不同平台上)。這些平台包括linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、Palm OS、QNX、VMS、Psion、Acom RISC OS、VxWorks、PlayStation、Sharp Zaurus、Windows CE、PocketPC、Symbian以及Google基於linux開發的android平台。
解釋性:一個用編譯性語言比如C或C++寫的程序可以從源文件(即C或C++語言)轉換到一個你的計算機使用的語言(二進制代碼,即0和1)。這個過程通過編譯器和不同的標記、選項完成。
運行程序的時候,連接/轉載器軟體把你的程序從硬碟復制到內存中並且運行。而Python語言寫的程序不需要編譯成二進制代碼。你可以直接從源代碼運行 程序。
④ python 類方法和靜態方法的區別
面相對象程序設計中,類方法和靜態方法是經常用到的兩個術語。
邏輯上講:類方法是只能由類名調用;靜態方法可以由類名或對象名進行調用。
在C++中,靜態方法與類方法邏輯上是等價的,只有一個概念,不會混淆。
而在python中,方法分為三類實例方法、類方法、靜態方法。代碼如下:
class Test(object):
def InstanceFun(self):
print("InstanceFun");
print(self);
@classmethod
def ClassFun(cls):
print("ClassFun");
print(cls);
@staticmethod
def StaticFun():
print("StaticFun");
t = Test();
t.InstanceFun();# 輸出InstanceFun,列印對象內存地址「<__main__.Test object at 0x0293DCF0>」
Test.ClassFun(); # 輸出ClassFun,列印類位置 <class '__main__.Test'>
Test.StaticFun(); # 輸出StaticFun
t.StaticFun(); # 輸出StaticFun
t.ClassFun(); # 輸出ClassFun,列印類位置 <class '__main__.Test'>
Test.InstanceFun(); # 錯誤,TypeError: unbound method instanceFun() must be called with Test instance as first argument
Test.InstanceFun(t); # 輸出InstanceFun,列印對象內存地址「<__main__.Test object at 0x0293DCF0>」
t.ClassFun(Test); # 錯誤 classFun() takes exactly 1 argument (2 given)
可以看到,在python中,兩種方法的主要區別在於參數。實例方法隱含的參數為類實例self,而類方法隱含的參數為類本身cls。
靜態方法無隱含參數,主要為了類實例也可以直接調用靜態方法。
所以邏輯上類方法應當只被類調用,實例方法實例調用,靜態方法兩者都能調用。主要區別在於參數傳遞上的區別,實例方法悄悄傳遞的是self引用作為參數,而類方法悄悄傳遞的是cls引用作為參數。
python實現了一定的靈活性使得類方法和靜態方法,都能夠被實例和類二者調用
⑤ 如何在Python中使用static,class,abstract方法
方法在Python中是如何工作的
方法就是一個函數,它作為一個類屬性而存在,你可以用如下方式來聲明、訪問一個函數:
Python
1
2
3
4
5
6
7
8
>>> class Pizza(object):
... def __init__(self, size):
... self.size = size
... def get_size(self):
... return self.size
...
>>> Pizza.get_size
<unbound method Pizza.get_size>
Python在告訴你,屬性_get_size是類Pizza的一個未綁定方法。這是什麼意思呢?很快我們就會知道答案:
Python
1
2
3
4
>>> Pizza.get_size()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
TypeError: unbound method get_size() must be called with Pizza instance as first argument (got nothing instead)
我們不能這么調用,因為它還沒有綁定到Pizza類的任何實例上,它需要一個實例作為第一個參數傳遞進去(Python2必須是該類的實例,Python3中可以是任何東西),嘗試一下:
Python
1
2
>>> Pizza.get_size(Pizza(42))
42
太棒了,現在用一個實例作為它的的第一個參數來調用,整個世界都清靜了,如果我說這種調用方式還不是最方便的,你也會這么認為的;沒錯,現在每次調用這個方法的時候我們都不得不引用這個類,如果不知道哪個類是我們的對象,長期看來這種方式是行不通的。
那麼Python為我們做了什麼呢,它綁定了所有來自類_Pizza的方法以及該類的任何一個實例的方法。也就意味著現在屬性get_size是Pizza的一個實例對象的綁定方法,這個方法的第一個參數就是該實例本身。
Python
1
2
3
4
>>> Pizza(42).get_size
<bound method Pizza.get_size of <__main__.Pizza object at 0x7f3138827910>>
>>> Pizza(42).get_size()
42
和我們預期的一樣,現在不再需要提供任何參數給_get_size,因為它已經是綁定的,它的self參數會自動地設置給Pizza實例,下面代碼是最好的證明:
Python
1
2
3
>>> m = Pizza(42).get_size
>>> m()
42
更有甚者,你都沒必要使用持有Pizza對象的引用了,因為該方法已經綁定到了這個對象,所以這個方法對它自己來說是已經足夠了。
也許,如果你想知道這個綁定的方法是綁定在哪個對象上,下面這種手段就能得知:
Python
1
2
3
4
5
6
7
>>> m = Pizza(42).get_size
>>> m.__self__
<__main__.Pizza object at 0x7f3138827910>
>>> # You could guess, look at this:
...
>>> m == m.__self__.get_size
True
顯然,該對象仍然有一個引用存在,只要你願意你還是可以把它找回來。
在Python3中,依附在類上的函數不再當作是未綁定的方法,而是把它當作一個簡單地函數,如果有必要它會綁定到一個對象身上去,原則依然和Python2保持一致,但是模塊更簡潔:
Python
1
2
3
4
5
6
7
8
>>> class Pizza(object):
... def __init__(self, size):
... self.size = size
... def get_size(self):
... return self.size
...
>>> Pizza.get_size
<function Pizza.get_size at 0x7f307f984dd0>
靜態方法
靜態方法是一類特殊的方法,有時你可能需要寫一個屬於這個類的方法,但是這些代碼完全不會使用到實例對象本身,例如:
Python
1
2
3
4
5
6
7
class Pizza(object):
@staticmethod
def mix_ingredients(x, y):
return x + y
def cook(self):
return self.mix_ingredients(self.cheese, self.vegetables)
這個例子中,如果把_mix_ingredients作為非靜態方法同樣可以運行,但是它要提供self參數,而這個參數在方法中根本不會被使用到。這里的@staticmethod裝飾器可以給我們帶來一些好處:
Python不再需要為Pizza對象實例初始化一個綁定方法,綁定方法同樣是對象,但是創建他們需要成本,而靜態方法就可以避免這些。
可讀性更好的代碼,看到@staticmethod我們就知道這個方法並不需要依賴對象本身的狀態。
可以在子類中被覆蓋,如果是把mix_ingredients作為模塊的頂層函數,那麼繼承自Pizza的子類就沒法改變pizza的mix_ingredients了如果不覆蓋cook的話。
工廠方法:它用於創建類的實例,例如一些預處理。如果使用@staticmethod代替,那我們不得不硬編碼Pizza類名在函數中,這使得任何繼承Pizza的類都不能使用我們這個工廠方法給它自己用。
調用靜態類:如果你把一個靜態方法拆分成多個靜態方法,除非你使用類方法,否則你還是得硬編碼類名。使用這種方式聲明方法,Pizza類名明永遠都不會在被直接引用,繼承和方法覆蓋都可以完美的工作。
Python
1
2
3
4
5
6
>>> Pizza().cook is Pizza().cook
False
>>> Pizza().mix_ingredients is Pizza.mix_ingredients
True
>>> Pizza().mix_ingredients is Pizza().mix_ingredients
True
類方法
話雖如此,什麼是類方法呢?類方法不是綁定到對象上,而是綁定在類上的方法。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> class Pizza(object):
... radius = 42
... @classmethod
... def get_radius(cls):
... return cls.radius
...
>>>
>>> Pizza.get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza().get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza.get_radius is Pizza().get_radius
True
>>> Pizza.get_radius()
42
無論你用哪種方式訪問這個方法,它總是綁定到了這個類身上,它的第一個參數是這個類本身(記住:類也是對象)。
什麼時候使用這種方法呢?類方法通常在以下兩種場景是非常有用的:
Python
1
2
3
4
5
6
7
class Pizza(object):
def __init__(self, ingredients):
self.ingredients = ingredients
@classmethod
def from_fridge(cls, fridge):
return cls(fridge.get_cheese() + fridge.get_vegetables())
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Pizza(object):
def __init__(self, radius, height):
self.radius = radius
self.height = height
@staticmethod
def compute_area(radius):
return math.pi * (radius ** 2)
@classmethod
def compute_volume(cls, height, radius):
return height * cls.compute_area(radius)
def get_volume(self):
return self.compute_volume(self.height, self.radius)
抽象方法
抽象方法是定義在基類中的一種方法,它沒有提供任何實現,類似於Java中介面(Interface)裡面的方法。
在Python中實現抽象方法最簡單地方式是:
Python
1
2
3
class Pizza(object):
def get_radius(self):
raise NotImplementedError
任何繼承自_Pizza的類必須覆蓋實現方法get_radius,否則會拋出異常。
這種抽象方法的實現有它的弊端,如果你寫一個類繼承Pizza,但是忘記實現get_radius,異常只有在你真正使用的時候才會拋出來。
Python
1
2
3
4
5
6
7
>>> Pizza()
<__main__.Pizza object at 0x7fb747353d90>
>>> Pizza().get_radius()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
File "<stdin>", line 3, in get_radius
NotImplementedError
還有一種方式可以讓錯誤更早的觸發,使用Python提供的abc模塊,對象被初始化之後就可以拋出異常:
Python
1
2
3
4
5
6
7
8
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
@abc.abstractmethod
def get_radius(self):
"""Method that should do something."""
使用abc後,當你嘗試初始化BasePizza或者任何子類的時候立馬就會得到一個TypeError,而無需等到真正調用get_radius的時候才發現異常。
Python
1
2
3
4
>>> BasePizza()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
TypeError: Can't instantiate abstract class BasePizza with abstract methods get_radius
混合靜態方法、類方法、抽象方法
當你開始構建類和繼承結構時,混合使用這些裝飾器的時候到了,所以這里列出了一些技巧。
記住,聲明一個抽象的方法,不會固定方法的原型,這就意味著雖然你必須實現它,但是我可以用任何參數列表來實現:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""
class Calzone(BasePizza):
def get_ingredients(self, with_egg=False):
egg = Egg() if with_egg else None
return self.ingredients + egg
這樣是允許的,因為Calzone滿足BasePizza對象所定義的介面需求。同樣我們也可以用一個類方法或靜態方法來實現:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""
class DietPizza(BasePizza):
@staticmethod
def get_ingredients():
return None
這同樣是正確的,因為它遵循抽象類BasePizza設定的契約。事實上get_ingredients方法並不需要知道返回結果是什麼,結果是實現細節,不是契約條件。
因此,你不能強制抽象方法的實現是一個常規方法、或者是類方法還是靜態方法,也沒什麼可爭論的。從Python3開始(在Python2中不能如你期待的運行,見issue5867),在abstractmethod方法上面使用@staticmethod和@classmethod裝飾器成為可能。
Python
1
2
3
4
5
6
7
8
9
10
11
12
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
ingredient = ['cheese']
@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the ingredient list."""
return cls.ingredients
別誤會了,如果你認為它會強制子類作為一個類方法來實現get_ingredients那你就錯了,它僅僅表示你實現的get_ingredients在BasePizza中是一個類方法。
可以在抽象方法中做代碼的實現?沒錯,Python與Java介面中的方法相反,你可以在抽象方法編寫實現代碼通過super()來調用它。(譯註:在Java8中,介面也提供的默認方法,允許在介面中寫方法的實現)
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
default_ingredients = ['cheese']
@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the ingredient list."""
return cls.default_ingredients
class DietPizza(BasePizza):
def get_ingredients(self):
return ['egg'] + super(DietPizza, self).get_ingredients()
這個例子中,你構建的每個pizza都通過繼承BasePizza的方式,你不得不覆蓋get_ingredients方法,但是能夠使用默認機制通過super()來獲取ingredient列表。
打賞支持我翻譯更多好文章,謝謝!
⑥ python靜態方法和類方法的區別
classA:deffun_i(self,x):print(x)@classmethoddeffun_c(cls,x):print(x)@staticmethoddeffun_s(x):print(x)a=A()a.fun_i(1)a.fun_s(1)A.fun_c(1)A.fun_s(1)調用方式不同:類方法:應該通過類調用實例方法:應該通過實例調用靜態方法:既可以通過類調用,也可以通過實例調用實參和形參的定義和傳遞不同:靜態方法:聲明和調用時,都沒有隱含參數。實例方法:聲明時,要定義一個隱含參數:self。調用時,實例本身被隱含地傳遞給這個參數。類方法:聲明時,要定義一個隱含參數:cls。調用時,類本身被隱含地傳遞給這個參數。
⑦ Python怎麼實現靜態變數
單純的靜態變數,不就是常量么。
python中,沒有static,定義常量的話。
PI=3.14
使用大寫字母,表示常量,以示與變數的區別。
⑧ Python中靜態方法和類方法的區別
面相對象程序設計中,類方法和靜態方法是經常用到的兩個術語。
邏輯上講:類方法是只能由類名調用;靜態方法可以由類名或對象名進行調用。
在C++中,靜態方法與類方法邏輯上是等價的,只有一個概念,不會混淆。
而在python中,方法分為三類實例方法、類方法、靜態方法。代碼如下:
class Test(object):
def InstanceFun(self):
print("InstanceFun");
print(self);
@classmethod
def ClassFun(cls):
print("ClassFun");
print(cls);
@staticmethod
def StaticFun():
print("StaticFun");
t = Test();
t.InstanceFun();# 輸出InstanceFun,列印對象內存地址「」
Test.ClassFun(); # 輸出ClassFun,列印類位置
Test.StaticFun(); # 輸出StaticFun
t.StaticFun(); # 輸出StaticFun
t.ClassFun(); # 輸出ClassFun,列印類位置
Test.InstanceFun(); # 錯誤,TypeError: unbound method instanceFun() must be called with Test instance as first argument
Test.InstanceFun(t); # 輸出InstanceFun,列印對象內存地址「」
t.ClassFun(Test); # 錯誤 classFun() takes exactly 1 argument (2 given)
可以看到,在PYTHON中,兩種方法的主要區別在於參數。實例方法隱含的參數為類實例self,而類方法隱含的參數為類本身cls。
靜態方法無隱含參數,主要為了類實例也可以直接調用靜態方法。
所以邏輯上類方法應當只被類調用,實例方法實例調用,靜態方法兩者都能調用。主要區別在於參數傳遞上的區別,實例方法悄悄傳遞的是self引用作為參數,而類方法悄悄傳遞的是cls引用作為參數。
Python實現了一定的靈活性使得類方法和靜態方法,都能夠被實例和類二者調用
⑨ python類方法和靜態方法的區別
類方法,可以調用類屬性。。。用於操作一些類中的公有屬性。。。比如這個士兵類,每個士兵都擁有一把相同的槍(gun),都有相同的最大血量(maxhp),如果在創建對象的時候,一個一個的賦值,就會顯得比較多餘。。。因此,把這兩個屬性提出來,作為一個公有屬性。。即每個士兵對象,都擁有一把95式步槍,都擁有30的最大血量。。之後聲明一個類方法(public),之後可以在類方法中,針對這兩個公有的屬性進行操作。。。
靜態方法,其實更像一個與類幾乎無關的函數。。不能操作類中的任何屬性。。所以它並不是用來操作類與對象本身的。。。但它又可以被對象調用。。。。比如游戲中,與士兵對話,士兵說話的內容一般存在資料庫中。。而當主角與士兵對話,針對資料庫查詢,並輸出到UI界面的相關工作,就可以放在這個函數里。。這樣會讓代碼結構更清晰。。。當然,如果不嫌亂,寫在類方法中,也是可以的。。。有人覺得PYTHON的靜態方法是雞肋。。它也確實不是必須的,但有時候卻可以讓代碼結構更清晰。。。比如你有幾十種不同的士兵類,你要找到對應每一個類的數據操作相關的函數,就會顯得很困難。。。適當使用靜態方法,就顯得一目瞭然