pythonjpeg
① python jpg與JPG有區別嘛
1.在通常情況下面 jpg與jpeg是一樣的,只是裡面保存的數據不一樣,但我們多數使用的是jpg(後綴是小寫,大寫的有些是無法讀寫),在圖片顏色豐富的地方使用該格式保存,像拍攝的相片,ps合成的圖片,經常保存圖片時我會壓縮2...
2.png是用於全透明(保存png24)圖片,該格式是多數用於小型格式的圖片,不然文件會很大;
3.gif是用於網路圖片,可以製作成帶有幀的動畫圖片,圖片文件比較小,同時顏色也不是很豐富,不建議用於帶簡便的圖片,除了顏色很淺很簡單的切片;
② 怎麼用 Python 將 pdf,doc 等轉換成 jpg
我是先把doc轉換成pdf,然後再轉jpg。
你可以用Wand(http://docs.wand-py.org/en/0.4.1/)來轉:
from wand.image import Image
with Image(filename='filename.pdf') as pdf:
with pdf.convert('jpeg') as image:
image.save(filename='result.jpeg')
③ 怎樣利用python將pdf轉換成jpg格式
可以用第三方庫wand實現(我的環境:win10、python3)
需要安裝wand 、imagemagick和ghostscript
wand的安裝很簡單:直接cmd 運行pip install wand
然後安裝imagemagick ,從這里下載網頁鏈接,注意是32位還是64位,這個需要和python的位數一致。
安裝過程注意勾選Install development headers and libraries for C and C++ 。安裝後設置MAGICK_HOME環境變數,值為imagemagick的安裝路徑,並將安裝路徑加入path。
詳情可參照此頁面網頁鏈接。
最後安裝ghostscript,這里下載網頁鏈接,選擇AGPL release,注意32位還是64位。
安裝過程很簡單,一路點擊next,如果不想安裝在c盤,可以改變安裝路徑,這個沒有影響。
最後上代碼(很簡單):
#-*-coding:utf-8-*-
fromwand.imageimportImage
withImage(filename="pdf_file_name",resolution=300)asimg:
img.format='jpeg'
img.save(filename='converted.jpg')
上面的pdf_file_name輸入要處理的pdf文件名,最後會在當前目錄下生成converted.jpg
說明:這幾行代碼比較簡單,處理頁數較少的pdf還行,頁數太多會卡住。但是可以用pyPDF2分割pdf然後轉換,這是一種思路,關於pyPDF2的教程自行網路吧。
④ python處理圖片數據
目錄
1.機器是如何存儲圖像的?
2.在Python中讀取圖像數據
3.從圖像數據中提取特徵的方法#1:灰度像素值特徵
4.從圖像數據中提取特徵的方法#2:通道的平均像素值
5.從圖像數據中提取特徵的方法#3:提取邊緣
是一張數字8的圖像,仔細觀察就會發現,圖像是由小方格組成的。這些小方格被稱為像素。
但是要注意,人們是以視覺的形式觀察圖像的,可以輕松區分邊緣和顏色,從而識別圖片中的內容。然而機器很難做到這一點,它們以數字的形式存儲圖像。請看下圖:
機器以數字矩陣的形式儲存圖像,矩陣大小取決於任意給定圖像的像素數。
假設圖像的尺寸為180 x 200或n x m,這些尺寸基本上是圖像中的像素數(高x寬)。
這些數字或像素值表示像素的強度或亮度,較小的數字(接近0)表示黑色,較大的數字(接近255)表示白色。通過分析下面的圖像,讀者就會弄懂到目前為止所學到的知識。
下圖的尺寸為22 x 16,讀者可以通過計算像素數來驗證:
圖片源於機器學習應用課程
剛才討論的例子是黑白圖像,如果是生活中更為普遍的彩色呢?你是否認為彩色圖像也以2D矩陣的形式存儲?
彩色圖像通常由多種顏色組成,幾乎所有顏色都可以從三原色(紅色,綠色和藍色)生成。
因此,如果是彩色圖像,則要用到三個矩陣(或通道)——紅、綠、藍。每個矩陣值介於0到255之間,表示該像素的顏色強度。觀察下圖來理解這個概念:
圖片源於機器學習應用課程
左邊有一幅彩色圖像(人類可以看到),而在右邊,紅綠藍三個顏色通道對應三個矩陣,疊加三個通道以形成彩色圖像。
請注意,由於原始矩陣非常大且可視化難度較高,因此這些不是給定圖像的原始像素值。此外,還可以用各種其他的格式來存儲圖像,RGB是最受歡迎的,所以筆者放到這里。讀者可以在此處閱讀更多關於其他流行格式的信息。
用Python讀取圖像數據
下面開始將理論知識付諸實踐。啟動Python並載入圖像以觀察矩陣:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)
#checking image shape
image.shape, image
(28,28)
矩陣有784個值,而且這只是整個矩陣的一小部分。用一個LIVE編碼窗口,不用離開本文就可以運行上述所有代碼並查看結果。
下面來深入探討本文背後的核心思想,並探索使用像素值作為特徵的各種方法。
方法#1:灰度像素值特徵
從圖像創建特徵最簡單的方法就是將原始的像素用作單獨的特徵。
考慮相同的示例,就是上面那張圖(數字『8』),圖像尺寸為28×28。
能猜出這張圖片的特徵數量嗎?答案是與像素數相同!也就是有784個。
那麼問題來了,如何安排這784個像素作為特徵呢?這樣,可以簡單地依次追加每個像素值從而生成特徵向量。如下圖所示:
下面來用Python繪制圖像,並為該圖像創建這些特徵:
image = imread('puppy.jpeg', as_gray=True)
image.shape, imshow(image)
(650,450)
該圖像尺寸為650×450,因此特徵數量應為297,000。可以使用NumPy中的reshape函數生成,在其中指定圖像尺寸:
#pixel features
features = np.reshape(image, (660*450))
features.shape, features
(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])
這里就得到了特徵——長度為297,000的一維數組。很簡單吧?在實時編碼窗口中嘗試使用此方法提取特徵。
但結果只有一個通道或灰度圖像,對於彩色圖像是否也可以這樣呢?來看看吧!
方法#2:通道的平均像素值
在讀取上一節中的圖像時,設置了參數『as_gray = True』,因此在圖像中只有一個通道,可以輕松附加像素值。下面刪除參數並再次載入圖像:
image = imread('puppy.jpeg')
image.shape
(660, 450, 3)
這次,圖像尺寸為(660,450,3),其中3為通道數量。可以像之前一樣繼續創建特徵,此時特徵數量將是660*450*3 = 891,000。
或者,可以使用另一種方法:
生成一個新矩陣,這個矩陣具有來自三個通道的像素平均值,而不是分別使用三個通道中的像素值。
下圖可以讓讀者更清楚地了解這一思路:
這樣一來,特徵數量保持不變,並且還能考慮來自圖像全部三個通道的像素值。
image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape
(660, 450)
現有一個尺寸為(660×450×3)的三維矩陣,其中660為高度,450為寬度,3是通道數。為獲取平均像素值,要使用for循環:
for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)
新矩陣具有相同的高度和寬度,但只有一個通道。現在,可以按照與上一節相同的步驟進行操作。依次附加像素值以獲得一維數組:
features = np.reshape(feature_matrix, (660*450))
features.shape
(297000,)
方法#3:提取邊緣特徵
請思考,在下圖中,如何識別其中存在的對象:
識別出圖中的對象很容易——狗、汽車、還有貓,那麼在區分的時候要考慮哪些特徵呢?形狀是一個重要因素,其次是顏色,或者大小。如果機器也能像這樣識別形狀會怎麼樣?
類似的想法是提取邊緣作為特徵並將其作為模型的輸入。稍微考慮一下,要如何識別圖像中的邊緣呢?邊緣一般都是顏色急劇變化的地方,請看下圖:
筆者在這里突出了兩個邊緣。這兩處邊緣之所以可以被識別是因為在圖中,可以分別看到顏色從白色變為棕色,或者由棕色變為黑色。如你所知,圖像以數字的形式表示,因此就要尋找哪些像素值發生了劇烈變化。
假設圖像矩陣如下:
圖片源於機器學習應用課程
該像素兩側的像素值差異很大,於是可以得出結論,該像素處存在顯著的轉變,因此其為邊緣。現在問題又來了,是否一定要手動執行此步驟?
當然不!有各種可用於突出顯示圖像邊緣的內核,剛才討論的方法也可以使用Prewitt內核(在x方向上)來實現。以下是Prewitt內核:
獲取所選像素周圍的值,並將其與所選內核(Prewitt內核)相乘,然後可以添加結果值以獲得最終值。由於±1已經分別存在於兩列之中,因此添加這些值就相當於獲取差異。
還有其他各種內核,下面是四種最常用的內核:
圖片源於機器學習應用課程
現在回到筆記本,為同一圖像生成邊緣特徵:
#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline
#reading the image
image = imread('puppy.jpeg',as_gray=True)
#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)
imshow(edges_prewitt_vertical, cmap='gray')
⑤ 用python讀取Excel表格中的JPEG圖片
Python和VBA都用不上,把Excel文件的擴展名改成.rar或者.zip,然後解壓,在解壓後的文件夾里就可以看到你要找的圖片了。當然,如果你願意,可以用Python來做這件事。
⑥ 怎麼用 Python 將 pdf,doc 等轉換成 jpg
我是先把doc轉換成pdf,然後再轉jpg。
你可以用Wand(http://docs.wand-py.org/en/0.4.1/)來轉:
from wand.image import Image
with Image(filename='filename.pdf') as pdf:
with pdf.convert('jpeg') as image:
image.save(filename='result.jpeg')
⑦ 求python將png圖片格式轉jpeg格式
轉換視頻音頻圖片等格式,可以使用格式工廠
⑧ 如何在python界面顯示圖片
wxpython:
# 使用wx.Image得到對象
bmp = wx.Image('bitmaps/image.bmp', wx.BITMAP_TYPE_BMP).ConvertToBitmap()
gif = wx.Image('bitmaps/image.gif', wx.BITMAP_TYPE_GIF).ConvertToBitmap()
png = wx.Image('bitmaps/image.png', wx.BITMAP_TYPE_PNG).ConvertToBitmap()
jpg = wx.Image('bitmaps/image.jpg', wx.BITMAP_TYPE_JPEG).ConvertToBitmap()
# 把它們顯示出來
pos = 10
wx.StaticBitmap(frame, -1, bmp, (10, pos), (bmp.GetWidth(), bmp.GetHeight()))
pos = pos + bmp.GetHeight() + 10
wx.StaticBitmap(frame, -1, gif, (10, pos), (gif.GetWidth(), gif.GetHeight()))
pos = pos + gif.GetHeight() + 10
wx.StaticBitmap(panel, -1, png, (10, pos), (png.GetWidth(), png.GetHeight()))
pos = pos + png.GetHeight() + 10
wx.StaticBitmap(frame, -1, jpg, (10, pos), (jpg.GetWidth(), jpg.GetHeight()))
具體的請根據你的實際情況修改,最好去http://www.wxpython.org/download.php#binaries
下載wxpython和wxpython demo看看,這個demo很強大的。