當前位置:首頁 » 編程語言 » c語言冒泡排序改進

c語言冒泡排序改進

發布時間: 2022-09-26 08:38:04

1. c語言冒泡排序。

#include<stdio.h>

void main()

{

int a[10];

int i,j,t;

printf("input 10 numbers: ");

for(i=0;i<10;i++)

scanf("%d",&a[i]);

for(j=0;j<9;j++) /*進行9次循環 實現9趟比較*/

for(i=0;i<9-j;i++) /*在每一趟中進行9-j次比較*/

if(a[i]>a[i+1]) /*相鄰兩個數比較,想降序只要改成a[i]<a[i+1]*/

{

t=a[i];

a[i]=a[i+1];

a[i+1]=t;

}

printf("the sorted numbers: ");

for(i=0;i<10;i++)

printf(" %d",a[i]);


}

(1)c語言冒泡排序改進擴展閱讀:

冒泡排序演算法的運作

1、比較相鄰的元素。如果第一個比第二個大(小),就交換他們兩個。

2、對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對。這步做完後,最後的元素會是最大(小)的數。

3、針對所有的元素重復以上的步驟,除了最後已經選出的元素(有序)。

4、持續每次對越來越少的元素(無序元素)重復上面的步驟,直到沒有任何一對數字需要比較,則序列最終有序。

簡單的表示

#include <stdio.h>

void swap(int *i, int *j)

{

int temp = *i;

*i = *j;

*j = temp;

}

int main()

{

int a[10] = {2,1,4,5,6,9,7,8,7,7};

int i,j;

for (i = 0; i < 10; i++)

{

for (j = 9; j > i; j--)//從後往前冒泡

{

if (a[j] < a[j-1])

{

swap(&a[j], &a[j-1]);

}

}

}

for (i = 0; i < 10; i++)

{

printf("%d ", a[i]);

}

return 0;

}

參考資料來源:冒泡排序-網路

2. C語言:採用冒泡排序方法,對10個數按由小到大的的順序排序

代碼如下(對10個整數進行升序排序):

#include&lt;stdio.h&gt;

int main()

{

int i,j,t,a[10]={5,4,8,3,6,9,7,222,64,88};

//排序

for(i=1;i&lt;10;i++)//外循環控制排序趟數,n個數排n-1趟

{

for(j=0;j&lt;10-1;j++)//內循環每趟比較的次數,第j趟比較n-i次

{

if(a[j]&gt;a[j+1])//相鄰元素比較,逆序則交換

{

t=a[j];

a[j]=a[j+1];

a[j+1]=t;

}

}

}

printf("排序後的結果是: ");

for(i=0;i&lt;10;i++)

{

printf("%d",a&lt;i&gt;);

}

printf(" ");

return 0;

}

冒泡法:

演算法分析:如果有n個數,則要進行n-1趟比較。在第1趟比較中要進行n-1次相鄰元素的兩兩比較,在第j趟比較中要進行n-j次兩兩比較。比較的順序從前往後,經過一趟比較後,將最值沉底(換到最後一個元素位置),最大值沉底為升序,最小值沉底為降序。

(2)c語言冒泡排序改進擴展閱讀:

include用法:

#include命令預處理命令的一種,預處理命令可以將別的源代碼內容插入到所指定的位置;可以標識出只有在特定條件下才會被編譯的某一段程序代碼;可以定義類似標識符功能的宏,在編譯時,預處理器會用別的文本取代該宏。

插入頭文件的內容

#include命令告訴預處理器將指定頭文件的內容插入到預處理器命令的相應位置。有兩種方式可以指定插入頭文件:

1、#include&lt;文件名&gt;

2、#include"文件名"

如果需要包含標准庫頭文件或者實現版本所提供的頭文件,應該使用第一種格式。如下例所示:

#include&lt;math.h&gt;//一些數學函數的原型,以及相關的類型和宏

如果需要包含針對程序所開發的源文件,則應該使用第二種格式。

採用#include命令所插入的文件,通常文件擴展名是.h,文件包括函數原型、宏定義和類型定義。只要使用#include命令,這些定義就可被任何源文件使用。如下例所示:

#include"myproject.h"//用在當前項目中的函數原型、類型定義和宏

你可以在#include命令中使用宏。如果使用宏,該宏的取代結果必須確保生成正確的#include命令。例1展示了這樣的#include命令。

【例1】在#include命令中的宏

#ifdef _DEBUG_

#define MY_HEADER"myProject_dbg.h"

#else

#define MY_HEADER"myProject.h"

#endif

#include MY_HEADER

當上述程序代碼進入預處理時,如果_DEBUG_宏已被定義,那麼預處理器會插入myProject_dbg.h的內容;如果還沒定義,則插入myProject.h的內容。

3. c語言用指針進行冒泡排序

根據我多年的 C 語言編程經驗,如果能夠少用(或者不用)指針的地方,那麼盡量還是不要使用指針,可以通過別的方法實現相同功能。例如:你這個冒泡排序程序,如果需要處理的數據量不大,你就可以使用數組下標來實現。具體的源程序,現在市面上關於數據結構的書籍裡面都會有各種具體排序(包括:順序檢索、二分搜索等)的源程序供參考。
雖然說 C 語言的指針功能相當強大,但同時也是最難於調試的地方。如果真的是需要處理的數據量相當巨大時,那麼也不是定義幾個指針變數就能夠解決問題的,那就必須要從計算機的數據結構和軟體演算法上進行根本的改進了。

4. C語言冒泡排序法

冒泡排序每一趟排序把最大的放在最右邊。

比如:

87 12 56 45 78

87和12交換:12 87 56 45 78

87和56交換: 56 87 45 78

87和45交換: 45 87 78

87和78交換: 78 87

到此第一趟排序結束,接下來的每一趟排序都是這樣。

#include<stdio.h>
voidPrint(int*num,intn)
{
inti;
for(i=0;i<n;i++)
printf("%d",num[i]);
puts(" ");
return;
}
voidBubble_Sort(int*num,intn)
{
inti,j;
for(i=0;i<n;i++)
{
for(j=0;i+j<n-1;j++)
{
if(num[j]>num[j+1])
{
inttemp=num[j];
num[j]=num[j+1];
num[j+1]=temp;
}
Print(num,n);
}
}
return;
}
intmain()
{
intnum[8]={87,12,56,45,78};
Bubble_Sort(num,5);
return0;
}

5. 在C語言中,冒泡排序是怎樣做的如題 謝謝了

main() { int i,j,temp; int a[10]; for(i=0;i<10;i++) scanf ("%d,",&a[i]); for(j=0;j<=9;j++) { for (i=0;i<10-j;i++) if (a[i]>a[i+1]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp;} } for(i=1;i<11;i++) printf("%5d,",a[i] ); printf("\n"); } -------------- 冒泡演算法 冒泡排序的演算法分析與改進 交換排序的基本思想是:兩兩比較待排序記錄的關鍵字,發現兩個記錄的次序相反時即進行交換,直到沒有反序的記錄為止。 應用交換排序基本思想的主要排序方法有:冒泡排序和快速排序。 冒泡排序 1、排序方法 將被排序的記錄數組R[1..n]垂直排列,每個記錄R看作是重量為R.key的氣泡。根據輕氣泡不能在重氣泡之下的原則,從下往上掃描數組R:凡掃描到違反本原則的輕氣泡,就使其向上"飄浮"。如此反復進行,直到最後任何兩個氣泡都是輕者在上,重者在下為止。 (1)初始 R[1..n]為無序區。 (2)第一趟掃描 從無序區底部向上依次比較相鄰的兩個氣泡的重量,若發現輕者在下、重者在上,則交換二者的位置。即依次比較(R[n],R[n-1]),(R[n-1],R[n-2]),…,(R[2],R[1]);對於每對氣泡(R[j+1],R[j]),若R[j+1].key<R[j].key,則交換R[j+1]和R[j]的內容。 第一趟掃描完畢時,"最輕"的氣泡就飄浮到該區間的頂部,即關鍵字最小的記錄被放在最高位置R[1]上。 (3)第二趟掃描 掃描R[2..n]。掃描完畢時,"次輕"的氣泡飄浮到R[2]的位置上…… 最後,經過n-1 趟掃描可得到有序區R[1..n] 注意: 第i趟掃描時,R[1..i-1]和R[i..n]分別為當前的有序區和無序區。掃描仍是從無序區底部向上直至該區頂部。掃描完畢時,該區中最輕氣泡飄浮到頂部位置R上,結果是R[1..i]變為新的有序區。 2、冒泡排序過程示例 對關鍵字序列為49 38 65 97 76 13 27 49的文件進行冒泡排序的過程 3、排序演算法 (1)分析 因為每一趟排序都使有序區增加了一個氣泡,在經過n-1趟排序之後,有序區中就有n-1個氣泡,而無序區中氣泡的重量總是大於等於有序區中氣泡的重量,所以整個冒泡排序過程至多需要進行n-1趟排序。 若在某一趟排序中未發現氣泡位置的交換,則說明待排序的無序區中所有氣泡均滿足輕者在上,重者在下的原則,因此,冒泡排序過程可在此趟排序後終止。為此,在下面給出的演算法中,引入一個布爾量exchange,在每趟排序開始前,先將其置為FALSE。若排序過程中發生了交換,則將其置為TRUE。各趟排序結束時檢查exchange,若未曾發生過交換則終止演算法,不再進行下一趟排序。 (2)具體演算法 void BubbleSort(SeqList R) { //R(l..n)是待排序的文件,採用自下向上掃描,對R做冒泡排序 int i,j; Boolean exchange; //交換標志 for(i=1;i<n;i++){ //最多做n-1趟排序 exchange=FALSE; //本趟排序開始前,交換標志應為假 for(j=n-1;j>=i;j--) //對當前無序區R[i..n]自下向上掃描 if(R[j+1].key<R[j].key){//交換記錄 R[0]=R[j+1]; //R[0]不是哨兵,僅做暫存單元 R[j+1]=R[j]; R[j]=R[0]; exchange=TRUE; //發生了交換,故將交換標志置為真 } if(!exchange) //本趟排序未發生交換,提前終止演算法 return; } //endfor(外循環) } //BubbleSort 4、演算法分析 (1)演算法的最好時間復雜度 若文件的初始狀態是正序的,一趟掃描即可完成排序。所需的關鍵字比較次數C和記錄移動次數M均達到最小值: Cmin=n-1 Mmin=0。 冒泡排序最好的時間復雜度為O(n)。 (2)演算法的最壞時間復雜度 若初始文件是反序的,需要進行n-1趟排序。每趟排序要進行n-i次關鍵字的比較(1≤i≤n-1),且每次比較都必須移動記錄三次來達到交換記錄位置。在這種情況下,比較和移動次數均達到最大值: Cmax=n(n-1)/2=O(n2) Mmax=3n(n-1)/2=O(n2) 冒泡排序的最壞時間復雜度為O(n2)。 (3)演算法的平均時間復雜度為O(n2) 雖然冒泡排序不一定要進行n-1趟,但由於它的記錄移動次數較多,故平均時間性能比直接插入排序要差得多。 (4)演算法穩定性 冒泡排序是就地排序,且它是穩定的。 5、演算法改進 上述的冒泡排序還可做如下的改進: (1)記住最後一次交換發生位置lastExchange的冒泡排序 在每趟掃描中,記住最後一次交換發生的位置lastExchange,(該位置之前的相鄰記錄均已有序)。下一趟排序開始時,R[1..lastExchange-1]是有序區,R[lastExchange..n]是無序區。這樣,一趟排序可能使當前有序區擴充多個記錄,從而減少排序的趟數。具體演算法【參見習題】。 (2) 改變掃描方向的冒泡排序 ①冒泡排序的不對稱性 能一趟掃描完成排序的情況: 只有最輕的氣泡位於R[n]的位置,其餘的氣泡均已排好序,那麼也只需一趟掃描就可以完成排序。 【例】對初始關鍵字序列12,18,42,44,45,67,94,10就僅需一趟掃描。 需要n-1趟掃描完成排序情況: 當只有最重的氣泡位於R[1]的位置,其餘的氣泡均已排好序時,則仍需做n-1趟掃描才能完成排序。 【例】對初始關鍵字序列:94,10,12,18,42,44,45,67就需七趟掃描。 ②造成不對稱性的原因 每趟掃描僅能使最重氣泡"下沉"一個位置,因此使位於頂端的最重氣泡下沉到底部時,需做n-1趟掃描。 ③改進不對稱性的方法 在排序過程中交替改變掃描方向,可改進不對稱性

6. C語言冒泡排序不太理解

C語言冒泡排序就是將被排序的記錄數組R[1..n]垂直排列,每個記錄R看作是重量為R.key的氣泡。根據輕氣泡不能在重氣泡之下的原則,從下往上掃描數組R:凡掃描到違反本原則的輕氣泡,就使其向上"飄浮"。如此反復進行,直到最後任何兩個氣泡都是輕者在上,重者在下為止。
冒泡演算法冒泡排序的演算法分析與改進 交換排序的基本思想是:
兩兩比較待排序記錄的關鍵字,發現兩個記錄的次序相反時即進行交換,直到沒有反序的記錄為止。 應用交換排序基本思想的主要排序方法有:冒泡排序和快速排序。
冒泡排序
1、排序方法 將被排序的記錄數組R[1..n]垂直排列,每個記錄R看作是重量為R.key的氣泡。根據輕氣泡不能在重氣泡之下的原則,從下往上掃描數組R:凡掃描到違反本原則的輕氣泡,就使其向上"飄浮"。如此反復進行,直到最後任何兩個氣泡都是輕者在上,重者在下為止。
(1)初始 R[1..n]為無序區。
(2)第一趟掃描 從無序區底部向上依次比較相鄰的兩個氣泡的重量,若發現輕者在下、重者在上,則交換二者的位置。即依次比較(R[n],R[n-1]),(R[n-1],R[n-2]),…,(R[2],R[1]);對於每對氣泡(R[j+1],R[j]),若R[j+1].key<R[j].key,則交換R[j+1]和R[j]的內容。 第一趟掃描完畢時,"最輕"的氣泡就飄浮到該區間的頂部,即關鍵字最小的記錄被放在最高位置R[1]上。
(3)第二趟掃描 掃描R[2..n]。掃描完畢時,"次輕"的氣泡飄浮到R[2]的位置上…… 最後,經過n-1 趟掃描可得到有序區R[1..n] 注意: 第i趟掃描時,R[1..i-1]和R[i..n]分別為當前的有序區和無序區。掃描仍是從無序區底部向上直至該區頂部。掃描完畢時,該區中最輕氣泡飄浮到頂部位置R上,結果是R[1..i]變為新的有序區。
2、冒泡排序過程示例 :
對關鍵字序列為49 38 65 97 76 13 27 49的文件進行冒泡排序的過程
3、排序演算法 :
(1)分析 因為每一趟排序都使有序區增加了一個氣泡,在經過n-1趟排序之後,有序區中就有n-1個氣泡,而無序區中氣泡的重量總是大於等於有序區中氣泡的重量,所以整個冒泡排序過程至多需要進行n-1趟排序。 若在某一趟排序中未發現氣泡位置的交換,則說明待排序的無序區中所有氣泡均滿足輕者在上,重者在下的原則,因此,冒泡排序過程可在此趟排序後終止。為此,在下面給出的演算法中,引入一個布爾量exchange,在每趟排序開始前,先將其置為FALSE。若排序過程中發生了交換,則將其置為TRUE。各趟排序結束時檢查exchange,若未曾發生過交換則終止演算法,不再進行下一趟排序。
(2)具體演算法 void BubbleSort(SeqList R) { //R(l..n)是待排序的文件,採用自下向上掃描,對R做冒泡排序 int i,j; Boolean exchange; //交換標志 for(i=1;i<n;i++){ //最多做n-1趟排序 exchange=FALSE; //本趟排序開始前,交換標志應為假 for(j=n-1;j>=i;j--) //對當前無序區R[i..n]自下向上掃描 if(R[j+1].key<R[j].key){//交換記錄 R[0]=R[j+1]; //R[0]不是哨兵,僅做暫存單元 R[j+1]=R[j]; R[j]=R[0]; exchange=TRUE; //發生了交換,故將交換標志置為真 } if(!exchange) //本趟排序未發生交換,提前終止演算法 return; } //endfor(外循環) } //BubbleSort
4、演算法分析 :
(1)演算法的最好時間復雜度 若文件的初始狀態是正序的,一趟掃描即可完成排序。所需的關鍵字比較次數C和記錄移動次數M均達到最小值: Cmin=n-1 Mmin=0。 冒泡排序最好的時間復雜度為O(n)。
(2)演算法的最壞時間復雜度 若初始文件是反序的,需要進行n-1趟排序。每趟排序要進行n-i次關鍵字的比較(1≤i≤n-1),且每次比較都必須移動記錄三次來達到交換記錄位置。在這種情況下,比較和移動次數均達到最大值: Cmax=n(n-1)/2=O(n2) Mmax=3n(n-1)/2=O(n2) 冒泡排序的最壞時間復雜度為O(n2)。
(3)演算法的平均時間復雜度為O(n2) 雖然冒泡排序不一定要進行n-1趟,但由於它的記錄移動次數較多,故平均時間性能比直接插入排序要差得多。
(4)演算法穩定性 冒泡排序是就地排序,且它是穩定的。
5、演算法改進 上述的冒泡排序還可做如下的改進:
(1)記住最後一次交換發生位置lastExchange的冒泡排序 在每趟掃描中,記住最後一次交換發生的位置lastExchange,(該位置之前的相鄰記錄均已有序)。下一趟排序開始時,R[1..lastExchange-1]是有序區,R[lastExchange..n]是無序區。這樣,一趟排序可能使當前有序區擴充多個記錄,從而減少排序的趟數。
(2) 改變掃描方向的冒泡排序,冒泡排序的不對稱性 能一趟掃描完成排序的情況: 只有最輕的氣泡位於R[n]的位置,其餘的氣泡均已排好序,那麼也只需一趟掃描就可以完成排序。
【例】對初始關鍵字序列12,18,42,44,45,67,94,10就僅需一趟掃描。 需要n-1趟掃描完成排序情況: 當只有最重的氣泡位於R[1]的位置,其餘的氣泡均已排好序時,則仍需做n-1趟掃描才能完成排序。
【例】對初始關鍵字序列:94,10,12,18,42,44,45,67就需七趟掃描。 ②造成不對稱性的原因 每趟掃描僅能使最重氣泡"下沉"一個位置,因此使位於頂端的最重氣泡下沉到底部時,需做n-1趟掃描。 ③改進不對稱性的方法 在排序過程中交替改變掃描方向,可改進不對稱性。

7. 求助:c語言用冒泡排序法進行排序,結果確實錯誤的。要怎麼修改才能用冒泡法進行正確排序。

{inti,j,t;
for(i=0;i<intN-1;i++)
for(j=0;j<intN-1-i;j++)
if(strS[j]>strS[j+1])
{t=strS[j];
strS[j]=strS[j+1];
strS[j+1]=t;
}
for(i=0;i<intN;i++)
printf("%c",strS[i]);
return;
}

8. c語言一維數組冒泡排序

如果遇到相等的值不進行交換,那這種排序方式是穩定的排序方式。 原理:比較兩個相鄰的元素,將值大的元素交換到右邊 思路:依次比較相鄰的兩個數,將比較小的數放在前面,比較大的數放在後面。 (1)第一次比較:首先比較第一和第二個數,將小數放在前面,將大數放在後面。 (2)比較第2和第3個數,將小數 放在前面,大數放在後面。 ...... (3)如此繼續,知道比較到最後的兩個數,將小數放在前面,大數放在後面,重復步驟,直至全部排序完成 (4)在上面一趟比較完成後,最後一個數一定是數組中最大的一個數,所以在比較第二趟的時候,最後一個數是不參加比較的。 (5)在第二趟比較完成後,倒數第二個數也一定是數組中倒數第二大數,所以在第三趟的比較中,最後兩個數是不參與比較的。 (6)依次類推,每一趟比較次數減少依次比上一趟減少一次。 演算法分析: (1)由此可見:N個數字要排序完成,總共進行N-1趟排序,每i趟的排序次數為(N-i)次,所以可以用雙重循環語句,外層控制循環多少趟,內層控制每一趟的循環次數 (2)冒泡排序的優點:每進行一趟排序,就會少比較一次,因為每進行一趟排序都會找出一個較大值。如上例:第一趟比較之後,排在最後的一個數一定是最大的一個數,第二趟排序的時候,只需要比較除了最後一個數以外的其他的數,同樣也能找出一個最大的數排在參與第二趟比較的數後面,第三趟比較的時候,只需要比較除了最後兩個數以外的其他的數,以此類推……也就是說,沒進行一趟比較,每一趟少比較一次,一定程度上減少了演算法的量。 (3)時間復雜度 1.如果我們的數據正序,只需要走一趟即可完成排序。所需的比較次數C和記錄移動次數M均達到最小值,即:Cmin=n-1;Mmin=0;所以,冒泡排序最好的時間復雜度為O(n)。 2.如果很不幸我們的數據是反序的,則需要進行n-1趟排序。每趟排序要進行n-i次比較(1≤i≤n-1),且每次比較都必須移動記錄三次來達到交換記錄位置。在這種情況下,比較和移動次數均達到最大值: 綜上所述:冒泡排序總的平均時間復雜度為:O(n2) ,時間復雜度和數據狀況無關。 void BubbleSort(int a[], int len) { int i, j, temp; for (j = 0; j < len - 1; j++) { for (i = 0; i < len - 1 - j; i++) if (a[i] > a[i + 1]) { temp = a[i]; a[i] = a[i + 1]; a[i + 1] = temp; } } }

9. C語言:編寫一個程序用冒泡排序實現升序排列

1、首先打開一個空白的C語言文件,首先先定義一組待排序的數列以及各個變數,接著就是用來處理排序的邏輯:

熱點內容
bat腳本卸載軟體 發布:2024-12-28 20:17:14 瀏覽:742
sqlserver的ip 發布:2024-12-28 20:16:58 瀏覽:358
c語言模塊 發布:2024-12-28 20:10:29 瀏覽:516
安卓螞蟻怎麼唱 發布:2024-12-28 20:00:21 瀏覽:163
編程課必須 發布:2024-12-28 19:58:49 瀏覽:782
怎麼合理配置家庭資產 發布:2024-12-28 19:57:10 瀏覽:317
編譯pl2303安卓驅動 發布:2024-12-28 19:53:09 瀏覽:365
怎麼看到手機wifi密碼 發布:2024-12-28 19:52:19 瀏覽:424
uia編程 發布:2024-12-28 19:49:00 瀏覽:11
安卓手機怎麼設置頂部背景 發布:2024-12-28 19:34:47 瀏覽:736