當前位置:首頁 » 編程語言 » python的多進程

python的多進程

發布時間: 2022-09-25 16:38:37

python中的多進程與多線程/分布式該如何使用

Python提供了非常好用的多進程包multiprocessing,你只需要定義一個函數,Python會替你完成其他所有事情。
藉助這個包,可以輕松完成從單進程到並發執行的轉換。
1、新建單一進程
如果我們新建少量進程,可以如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
p = multiprocessing.Process(target=func, args=("hello", ))
p.start()
p.join()
print "Sub-process done."12345678910111213
2、使用進程池
是的,你沒有看錯,不是線程池。它可以讓你跑滿多核CPU,而且使用方法非常簡單。
注意要用apply_async,如果落下async,就變成阻塞版本了。
processes=4是最多並發進程數量。
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
for i in xrange(10):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, ))
pool.close()
pool.join()
print "Sub-process(es) done."12345678910111213141516
3、使用Pool,並需要關注結果
更多的時候,我們不僅需要多進程執行,還需要關注每個進程的執行結果,如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
return "done " + msg
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(10):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print res.get()
print "Sub-process(es) done."
2014.12.25更新
根據網友評論中的反饋,在Windows下運行有可能崩潰(開啟了一大堆新窗口、進程),可以通過如下調用來解決:
multiprocessing.freeze_support()1
附錄(自己的腳本):
#!/usr/bin/python
import threading
import subprocess
import datetime
import multiprocessing
def dd_test(round, th):
test_file_arg = 'of=/zbkc/test_mds_crash/1m_%s_%s_{}' %(round, th)
command = "seq 100 | xargs -i dd if=/dev/zero %s bs=1M count=1" %test_file_arg
print command
subprocess.call(command,shell=True,stdout=open('/dev/null','w'),stderr=subprocess.STDOUT)
def mds_stat(round):
p = subprocess.Popen("zbkc mds stat", shell = True, stdout = subprocess.PIPE)
out = p.stdout.readlines()
if out[0].find('active') != -1:
command = "echo '0205pm %s round mds status OK, %s' >> /round_record" %(round, datetime.datetime.now())
command_2 = "time (ls /zbkc/test_mds_crash/) 2>>/round_record"
command_3 = "ls /zbkc/test_mds_crash | wc -l >> /round_record"
subprocess.call(command,shell=True)
subprocess.call(command_2,shell=True)
subprocess.call(command_3,shell=True)
return 1
else:
command = "echo '0205 %s round mds status abnormal, %s, %s' >> /round_record" %(round, out[0], datetime.datetime.now())
subprocess.call(command,shell=True)
return 0
#threads = []
for round in range(1, 1600):
pool = multiprocessing.Pool(processes = 10) #使用進程池
for th in range(10):
# th_name = "thread-" + str(th)
# threads.append(th_name) #添加線程到線程列表
# threading.Thread(target = dd_test, args = (round, th), name = th_name).start() #創建多線程任務
pool.apply_async(dd_test, (round, th))
pool.close()
pool.join()
#等待線程完成
# for t in threads:
# t.join()
if mds_stat(round) == 0:
subprocess.call("zbkc -s",shell=True)
break

❷ python怎麼多進程

需要借用庫,來進行多進程,
threading
可以去了解熟悉這個庫,這個可以實現多進程並發

❸ Python多進程運行——Multiprocessing基礎教程2

上篇文章簡單介紹了multiprocessing模塊,本文將要介紹進程之間的數據共享和信息傳遞的概念。

在多進程處理中,所有新創建的進程都會有這兩個特點:獨立運行,有自己的內存空間。

我們來舉個例子展示一下:

這個程序的輸出結果是:

在上面的程序中我們嘗試在兩個地方列印全局列表result的內容:

我們再用一張圖來幫助理解記憶不同進程間的數據關系:

如果程序需要在不同的進程之間共享一些數據的話,該怎麼做呢?不用擔心,multiprocessing模塊提供了Array對象和Value對象,用來在進程之間共享數據。

所謂Array對象和Value對象分別是指從共享內存中分配的ctypes數組和對象。我們直接來看一個例子,展示如何用Array對象和Value對象在進程之間共享數據:

程序輸出的結果如下:

成功了!主程序和p1進程輸出了同樣的結果,說明程序中確實完成了不同進程間的數據共享。那麼我們來詳細看一下上面的程序做了什麼:

在主程序中我們首先創建了一個Array對象:

向這個對象輸入的第一個參數是數據類型:i表示整數,d代表浮點數。第二個參數是數組的大小,在這個例子中我們創建了包含4個元素的數組。

類似的,我們創建了一個Value對象:

我們只對Value對象輸入了一個參數,那就是數據類型,與上述的方法一致。當然,我們還可以對其指定一個初始值(比如10),就像這樣:

隨後,我們在創建進程對象時,將剛創建好的兩個對象:result和square_sum作為參數輸入給進程:

在函數中result元素通過索引進行數組賦值,square_sum通過 value 屬性進行賦值。

注意:為了完整列印result數組的結果,需要使用 result[:] 進行列印,而square_sum也需要使用 value 屬性進行列印:

每當python程序啟動時,同時也會啟動一個伺服器進程。隨後,只要我們需要生成一個新進程,父進程就會連接到伺服器並請求它派生一個新進程。這個伺服器進程可以保存Python對象,並允許其他進程使用代理來操作它們。

multiprocessing模塊提供了能夠控制伺服器進程的Manager類。所以,Manager類也提供了一種創建可以在不同流程之間共享的數據的方法。

伺服器進程管理器比使用共享內存對象更靈活,因為它們可以支持任意對象類型,如列表、字典、隊列、值、數組等。此外,單個管理器可以由網路上不同計算機上的進程共享。

但是,伺服器進程管理器的速度比使用共享內存要慢。

讓我們來看一個例子:

這個程序的輸出結果是:

我們來理解一下這個程序做了什麼:首先我們創建了一個manager對象

在with語句下的所有行,都是在manager對象的范圍內的。接下來我們使用這個manager對象創建了列表(類似的,我們還可以用 manager.dict() 創建字典)。

最後我們創建了進程p1(用於在records列表中插入一條新的record)和p2(將records列印出來),並將records作為參數進行傳遞。

伺服器進程的概念再次用下圖總結一下:

為了能使多個流程能夠正常工作,常常需要在它們之間進行一些通信,以便能夠劃分工作並匯總最後的結果。multiprocessing模塊支持進程之間的兩種通信通道:Queue和Pipe。

使用隊列來回處理多進程之間的通信是一種比較簡單的方法。任何Python對象都可以使用隊列進行傳遞。我們來看一個例子:

上面這個程序的輸出結果是:

我們來看一下上面這個程序到底做了什麼。首先我們創建了一個Queue對象:

然後,將這個空的Queue對象輸入square_list函數。該函數會將列表中的數平方,再使用 put() 方法放入隊列中:

隨後使用 get() 方法,將q列印出來,直至q重新稱為一個空的Queue對象:

我們還是用一張圖來幫助理解記憶:

一個Pipe對象只能有兩個端點。因此,當進程只需要雙向通信時,它會比Queue對象更好用。

multiprocessing模塊提供了 Pipe() 函數,該函數返回由管道連接的一對連接對象。 Pipe() 返回的兩個連接對象分別表示管道的兩端。每個連接對象都有 send() 和 recv() 方法。

我們來看一個例子:

上面這個程序的輸出結果是:

我們還是來看一下這個程序到底做了什麼。首先創建了一個Pipe對象:

與上文說的一樣,該對象返回了一對管道兩端的兩個連接對象。然後使用 send() 方法和 recv() 方法進行信息的傳遞。就這么簡單。在上面的程序中,我們從一端向另一端發送一串消息。在另一端,我們收到消息,並在收到END消息時退出。

要注意的是,如果兩個進程(或線程)同時嘗試從管道的同一端讀取或寫入管道中的數據,則管道中的數據可能會損壞。不過不同的進程同時使用管道的兩端是沒有問題的。還要注意,Queue對象在進程之間進行了適當的同步,但代價是增加了計算復雜度。因此,Queue對象對於線程和進程是相對安全的。

最後我們還是用一張圖來示意:

Python的multiprocessing模塊還剩最後一篇文章:多進程的同步與池化

敬請期待啦!

❹ python 多進程和多線程配合

由於python的多線程中存在PIL鎖,因此python的多線程不能利用多核,那麼,由於現在的計算機是多核的,就不能充分利用計算機的多核資源。但是python中的多進程是可以跑在不同的cpu上的。因此,嘗試了多進程+多線程的方式,來做一個任務。比如:從中科大的鏡像源中下載多個rpm包。
#!/usr/bin/pythonimport reimport commandsimport timeimport multiprocessingimport threadingdef download_image(url):
print '*****the %s rpm begin to download *******' % url
commands.getoutput('wget %s' % url)def get_rpm_url_list(url):
commands.getoutput('wget %s' % url)
rpm_info_str = open('index.html').read()

regu_mate = '(?<=<a href=")(.*?)(?=">)'
rpm_list = re.findall(regu_mate, rpm_info_str)

rpm_url_list = [url + rpm_name for rpm_name in rpm_list] print 'the count of rpm list is: ', len(rpm_url_list) return rpm_url_
def multi_thread(rpm_url_list):
threads = [] # url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
# rpm_url_list = get_rpm_url_list(url)
for index in range(len(rpm_url_list)): print 'rpm_url is:', rpm_url_list[index]
one_thread = threading.Thread(target=download_image, args=(rpm_url_list[index],))
threads.append(one_thread)

thread_num = 5 # set threading pool, you have put 4 threads in it
while 1:
count = min(thread_num, len(threads)) print '**********count*********', count ###25,25,...6707%25

res = [] for index in range(count):
x = threads.pop()
res.append(x) for thread_index in res:
thread_index.start() for j in res:
j.join() if not threads:
def multi_process(rpm_url_list):
# process num at the same time is 4
process = []
rpm_url_group_0 = []
rpm_url_group_1 = []
rpm_url_group_2 = []
rpm_url_group_3 = [] for index in range(len(rpm_url_list)): if index % 4 == 0:
rpm_url_group_0.append(rpm_url_list[index]) elif index % 4 == 1:
rpm_url_group_1.append(rpm_url_list[index]) elif index % 4 == 2:
rpm_url_group_2.append(rpm_url_list[index]) elif index % 4 == 3:
rpm_url_group_3.append(rpm_url_list[index])
rpm_url_groups = [rpm_url_group_0, rpm_url_group_1, rpm_url_group_2, rpm_url_group_3] for each_rpm_group in rpm_url_groups:
each_process = multiprocessing.Process(target = multi_thread, args = (each_rpm_group,))
process.append(each_process) for one_process in process:
one_process.start() for one_process in process:
one_process.join()# for each_url in rpm_url_list:# print '*****the %s rpm begin to download *******' %each_url## commands.getoutput('wget %s' %each_url)
def main():
url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
url_paas = 'http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/'
url_paas2 ='http://mirrors.ustc.e.cn/fedora/development/26/Server/x86_64/os/Packages/u/'

start_time = time.time()
rpm_list = get_rpm_url_list(url_paas) print multi_process(rpm_list) # print multi_thread(rpm_list)
#print multi_process()
# print multi_thread(rpm_list)
# for index in range(len(rpm_list)):
# print 'rpm_url is:', rpm_list[index]
end_time = time.time() print 'the download time is:', end_time - start_timeprint main()123456789101112131415161718

代碼的功能主要是這樣的:
main()方法中調用get_rpm_url_list(base_url)方法,獲取要下載的每個rpm包的具體的url地址。其中base_url即中科大基礎的鏡像源的地址,比如:http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/,這個地址下有幾十個rpm包,get_rpm_url_list方法將每個rpm包的url地址拼出來並返回。
multi_process(rpm_url_list)啟動多進程方法,在該方法中,會調用多線程方法。該方法啟動4個多進程,將上面方法得到的rpm包的url地址進行分組,分成4組,然後每一個組中的rpm包再最後由不同的線程去執行。從而達到了多進程+多線程的配合使用。
代碼還有需要改進的地方,比如多進程啟動的進程個數和rpm包的url地址分組是硬編碼,這個還需要改進,畢竟,不同的機器,適合同時啟動的進程個數是不同的。

❺ python可以多進程嗎

想要充分利用多核CPU資源,Python中大部分情況下都需要使用多進程,Python中提供了multiprocessing這個包實現多進程。multiprocessing支持子進程、進程間的同步與通信,提供了Process、Queue、Pipe、Lock等組件。

開辟子進程
multiprocessing中提供了Process類來生成進程實例

Process([group [, target [, name [, args [, kwargs]]]]])
group分組,實際上不使用
target表示調用對象,你可以傳入方法的名字
args表示給調用對象以元組的形式提供參數,比如target是函數a,他有兩個參數m,n,那麼該參數為args=(m, n)即可
kwargs表示調用對象的字典
name是別名,相當於給這個進程取一個名字
先來個小例子:

# -*- coding:utf-8 -*-
from multiprocessing import Process, Pool
import os
import time

def run_proc(wTime):
n = 0
while n < 3:
print "subProcess %s run," % os.getpid(), "{0}".format(time.ctime()) #獲取當前進程號和正在運行是的時間
time.sleep(wTime) #等待(休眠)
n += 1

if __name__ == "__main__":
p = Process(target=run_proc, args=(2,)) #申請子進程
p.start() #運行進程
print "Parent process run. subProcess is ", p.pid
print "Parent process end,{0}".format(time.ctime())
運行結果:

Parent process run. subProcess is 30196
Parent process end,Mon Mar 27 11:20:21 2017
subProcess 30196 run, Mon Mar 27 11:20:21 2017
subProcess 30196 run, Mon Mar 27 11:20:23 2017
subProcess 30196 run, Mon Mar 27 11:20:25 2017

根據運行結果可知,父進程運行結束後子進程仍然還在運行,這可能造成僵屍( zombie)進程。

通常情況下,當子進程終結時,它會通知父進程,清空自己所佔據的內存,並在內核里留下自己的退出信息。父進程在得知子進程終結時,會從內核中取出子進程的退出信息。但是,如果父進程早於子進程終結,這可能造成子進程的退出信息滯留在內核中,子進程成為僵屍(zombie)進程。當大量僵屍進程積累時,內存空間會被擠占。

有什麼辦法可以避免僵屍進程呢?
這里介紹進程的一個屬性 deamon,當其值為TRUE時,其父進程結束,該進程也直接終止運行(即使還沒運行完)。
所以給上面的程序加上p.deamon = true,看看效果。

# -*- coding:utf-8 -*-
from multiprocessing import Process, Pool
import os
import time

def run_proc(wTime):
n = 0
while n < 3:
print "subProcess %s run," % os.getpid(), "{0}".format(time.ctime())
time.sleep(wTime)
n += 1

if __name__ == "__main__":
p = Process(target=run_proc, args=(2,))
p.daemon = True #加入daemon
p.start()
print "Parent process run. subProcess is ", p.pid
print "Parent process end,{0}".format(time.ctime())
執行結果:

Parent process run. subProcess is 31856
Parent process end,Mon Mar 27 11:40:10 2017

這是問題又來了,子進程並沒有執行完,這不是所期望的結果。有沒辦法將子進程執行完後才讓父進程結束呢?
這里引入p.join()方法,它使子進程執行結束後,父進程才執行之後的代碼

# -*- coding:utf-8 -*-
from multiprocessing import Process, Pool
import os
import time

def run_proc(wTime):
n = 0
while n < 3:
print "subProcess %s run," % os.getpid(), "{0}".format(time.ctime())
time.sleep(wTime)
n += 1

if __name__ == "__main__":
p = Process(target=run_proc, args=(2,))
p.daemon = True
p.start()
p.join() #加入join方法
print "Parent process run. subProcess is ", p.pid
print "Parent process end,{0}".format(time.ctime())
執行結果:

subProcess 32076 run, Mon Mar 27 11:46:07 2017
subProcess 32076 run, Mon Mar 27 11:46:09 2017
subProcess 32076 run, Mon Mar 27 11:46:11 2017
Parent process run. subProcess is 32076
Parent process end,Mon Mar 27 11:46:13 2017

這樣所有的進程就能順利的執行了。

❻ python 多進程的順序問題

因為進程池一次只能運行4個進程,0,1,2,3是四個進程同時執行,那麼4隻能等待。當進程池中任意一個進程結束後,4立即執行,所以在0結束後4開始執行,接著1,2,3陸續結束,4最後結束。

❼ 為什麼Python中的NumPy會多進程並行載入數據,而且返回的結果卻是相同的

明敏 發自 凹非寺
量子位 報道 | 公眾號 QbitAI

到底是怎樣的一個bug,能讓95%的Pytorch庫中招,就連特斯拉AI總監深受困擾?
還別說,這個bug雖小,但有夠「狡猾」的。
這就是最近Reddit上熱議的一個話題,是一位網友在使用再平常不過的Pytorch+Numpy組合時發現。
最主要的是,在代碼能夠跑通的情況下,它甚至還會影響模型的准確率!
除此之外,網友熱議的另外一個點,竟然是:

而是它到底算不算一個bug?

這究竟是怎麼一回事?
事情的起因是一位網友發現,在PyTorch中用NumPy來生成隨機數時,受到數據預處理的限制,會多進程並行載入數據,但最後每個進程返回的隨機數卻是相同的。
他還舉出例子證實了自己的說法。
如下是一個示例數據集,它會返回三個元素的隨機向量。這里採用的批量大小分別為2,工作進程為4個。
然後神奇的事情發生了:每個進程返回的隨機數都是一樣的。
這個結果會著實讓人有點一頭霧水,就好像數學應用題求小明走一段路程需要花費多少時間,而你卻算出來了負數。
發現了問題後,這位網友還在GitHub上下載了超過10萬個PyTorch庫,用同樣的方法產生隨機數。
結果更加令人震驚:居然有超過95%的庫都受到這個問題的困擾!
這其中不乏PyTorch的官方教程和OpenAI的代碼,連特斯拉AI總監Karpathy也承認自己「被坑過」!
但有一說一,這個bug想要解決也不難:只需要在每個epoch都重新設置seed,或者用python內置的隨機數生成器就可以避免這個問題。
到底是不是bug?
如果這個問題已經可以解決,為什麼還會引起如此大的討論呢?
因為網友們的重點已經上升到了「哲學」層面:
這到底是不是一個bug?
在Reddit上有人認為:這不是一個bug。

雖然這個問題非常常見,但它並不算是一個bug,而是一個在調試時不可以忽略的點。

就是這個觀點,激起了千層浪花,許多人都認為他忽略了問題的關鍵所在。

這不是產生偽隨機數的問題,也不是numpy的問題,問題的核心是在於PyTorch中的DataLoader的實現

對於包含隨機轉換的數據載入pipeline,這意味著每個worker都將選擇「相同」的轉換。而現在NN中的許多數據載入pipeline,都使用某種類型的隨機轉換來進行數據增強,所以不重新初始化可能是一個預設。

另一位網友也表示這個bug其實是在預設程序下運行才出現的,應該向更多用戶指出來。
並且95%以上的Pytorch庫受此困擾,也絕不是危言聳聽。
有人就分享出了自己此前的慘痛經歷:

我認識到這一點是之前跑了許多進程來創建數據集時,然而發現其中一半的數據是重復的,之後花了很長的時間才發現哪裡出了問題。

也有用戶補充說,如果 95% 以上的用戶使用時出現錯誤,那麼代碼就是錯的。

順便一提,這提供了Karpathy定律的另一個例子:即使你搞砸了一些非常基本代碼,「neural nets want to work」。

你有踩過PyTorch的坑嗎?
如上的bug並不是偶然,隨著用PyTorch的人越來越多,被發現的bug也就越來越多,某乎上還有PyTorch的坑之總結,被瀏覽量高達49w。
其中從向量、函數到model.train(),無論是真bug還是自己出了bug,大家的血淚史還真的是各有千秋。
所以,關於PyTorch你可以分享的經驗血淚史嗎?
歡迎評論區留言討論~
參考鏈接:
[1]https://tanelp.github.io/posts/a-bug-that-plagues-thousands-of-open-source-ml-projects/
[2]https://www.reddit.com/r/MachineLearning/comments/mocpgj/p_using_pytorch_numpy_a_bug_that_plagues/
[3]https://www.hu.com/question/67209417/answer/866488638
— 完 —

❽ 如何使用Python實現多進程編程

1.Process
創建進程的類:Process([group[,target[,name[,args[,kwargs]]]]]),target表示調用對象,args表示調用對象的位置參數元組。kwargs表示調用對象的字典。name為別名。group實質上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()啟動某個進程。
屬性:authkey、daemon(要通過start()設置)、exitcode(進程在運行時為None、如果為–N,表示被信號N結束)、name、pid。其中daemon是父進程終止後自動終止,且自己不能產生新進程,必須在start()之前設置。

例1.1:創建函數並將其作為單個進程
importmultiprocessing
importtime

defworker(interval):
n=5
whilen>0:
print("Thetimeis{0}".format(time.ctime()))
time.sleep(interval)
n-=1

if__name__=="__main__":
p=multiprocessing.Process(target=worker,args=(3,))
p.start()
print"p.pid:",p.pid
print"p.name:",p.name
print"p.is_alive:",p.is_alive()
結果
12345678p.pid:8736p.name:Process-1p.is_alive:TrueThetimeisTueApr2120:55:122015ThetimeisTueApr2120:55:152015ThetimeisTueApr2120:55:182015ThetimeisTueApr2120:55:212015ThetimeisTueApr2120:55:242015

例1.2:創建函數並將其作為多個進程
importmultiprocessing
importtime

defworker_1(interval):
print"worker_1"
time.sleep(interval)
print"endworker_1"

defworker_2(interval):
print"worker_2"
time.sleep(interval)
print"endworker_2"

defworker_3(interval):
print"worker_3"
time.sleep(interval)
print"endworker_3"

if__name__=="__main__":
p1=multiprocessing.Process(target=worker_1,args=(2,))
p2=multiprocessing.Process(target=worker_2,args=(3,))
p3=multiprocessing.Process(target=worker_3,args=(4,))

p1.start()
p2.start()
p3.start()

print("ThenumberofCPUis:"+str(multiprocessing.cpu_count()))
forpinmultiprocessing.active_children():
print("childp.name:"+p.name+" p.id"+str(p.pid))
print"END!!!!!!!!!!!!!!!!!"
結果
1234567891011ThenumberofCPUis:4childp.name:Process-3p.id7992childp.name:Process-2p.id4204childp.name:Process-1p.id6380END!!!!!!!!!!!!!!!!!worker_1worker_3worker_2endworker_1endworker_2endworker_3

例1.3:將進程定義為類
importmultiprocessing
importtime

classClockProcess(multiprocessing.Process):
def__init__(self,interval):
multiprocessing.Process.__init__(self)
self.interval=interval

defrun(self):
n=5
whilen>0:
print("thetimeis{0}".format(time.ctime()))
time.sleep(self.interval)
n-=1

if__name__=='__main__':
p=ClockProcess(3)
p.start()
註:進程p調用start()時,自動調用run()
結果
12345thetimeisTueApr2120:31:302015thetimeisTueApr2120:31:332015thetimeisTueApr2120:31:362015thetimeisTueApr2120:31:392015thetimeisTueApr2120:31:422015

❾ python能實現並行嗎

Python可以實現並行,Python可以用多進程來實現並行。

進程與線程的定義:

進程是具有一定獨立功能的程序關於某個數據集合上的一次運行活動,進程是系統進行資源分配和調度的一個獨立單位。

線程是進程的一個實體,是CPU調度和分派的基本單位,它是比進程更小的能獨立運行的基本單位。

線程自己基本上不擁有系統資源,只擁有一點在運行中必不可少的資源(如程序計數器,一組寄存器和棧),但是它可與同屬一個進程的其他的線程共享進程所擁有的全部資源。

進程與線程的聯系:

一個線程可以創建和撤銷另一個線程;同一個進程中的多個線程之間可以並發執行.

相對進程而言,線程是一個更加接近於執行體的概念,它可以與同進程中的其他線程共享數據,但擁有自己的棧空間,擁有獨立的執行序列。

更多Python知識,請關註:Python自學網!!

❿ python中多進程和多線程的區別

什麼是線程、進程?
進程(process)與線程(thread)是操作系統的基本概念,它們比較抽象,不容易掌握。
關於這兩者,最經典的一句話就是「進程是資源分配的最小單位,線程是CPU調度的最小單位」,線程是程序中一個單一的順序控制流程,進程內一個相對獨立的、可調度的執行單元,是系統獨立調度和分配CPU的基本單位指運行中的程序的調度單位,在單個程序中同時運行多個線程完成不同的工作,稱為多線程。
進程與線程的區別是什麼?
進程是資源分配的基本單位,所有與該進程有關的資源,都被記錄在進程式控制制塊PCB中,以表示該進程擁有這些資源或正在使用它們,另外,進程也是搶占處理機的調度單位,它擁有一個完整的虛擬地址空間,當進程發生調度時,不同的進程擁有不同的虛擬地址空間,而同一進程內的不同線程共享同一地址空間。
與進程相對應的,線程與資源分配無關,它屬於某一個進程,並與進程內的其他線程一起共享進程的資源,線程只由相關堆棧(系統棧或用戶棧)寄存器和線程式控制製表TCB組成,寄存器可被用來存儲線程內的局部變數,但不能存儲其他線程的相關變數。
通常在一個進程中可以包含若干個線程,它們可以利用進程所擁有的資源,在引入線程的操作系統中,通常都是把進程作為分配資源的基本單位,而把線程作為獨立運行和獨立調度的基本單位。
由於線程比進程更小,基本上不擁有系統資源,所以對它的調度所付出的開銷就會小得多,能更高效的提高系統內多個程序間並發執行的程度,從而顯著提高系統資源的利用率和吞吐量。
因而近年來推出的通用操作系統都引入了線程,以便進一步提高系統的並發性,並把它視為現代操作系統的一個重要指標。

熱點內容
鎧俠tc10固態硬碟有緩存嗎 發布:2024-12-30 01:36:27 瀏覽:877
睿威攝像頭密碼是多少 發布:2024-12-30 01:24:36 瀏覽:902
連接本地sql資料庫 發布:2024-12-30 01:23:39 瀏覽:132
聲控戴耳機解壓視頻 發布:2024-12-30 01:22:55 瀏覽:306
php數組記錄 發布:2024-12-30 01:22:05 瀏覽:420
筆記本5開夢幻要什麼配置 發布:2024-12-30 01:19:42 瀏覽:502
壓縮mb 發布:2024-12-30 01:12:16 瀏覽:138
c語言求字元串的長度 發布:2024-12-30 01:10:22 瀏覽:218
如何把安卓數據轉移到蘋果12 發布:2024-12-30 00:50:09 瀏覽:86
魯豫訪問金星 發布:2024-12-30 00:50:09 瀏覽:770