矩陣索引python
A. python解決矩陣問題
下面是基於python3.4的數組矩陣輸入方法:
1.import numpy as np
2.arr = [1,2,3,4,5,6,7,8,9]
3.matrix_a = np.array(arr)2.
4.手動定義一個空數組:arr =[],鏈表數組:a = [1,2,[1,2,3]]。
Python, 是一種面向對象的解釋型計算機程序設計語言,由荷蘭人Guido van Rossum於1989年發明,第一個公開發行版發行於1991年。
Python是純粹的自由軟體,源代碼和解釋器CPython遵循GPL(GNUGeneral Public License)協議[2]。Python語法簡潔清晰,特色之一是強制用空白符(white space)作為語句縮進。
Python具有豐富和強大的庫。它常被昵稱為膠水語言,能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕松地聯結在一起。常見的一種應用情形是,使用Python快速生成程序的原型(有時甚至是程序的最終界面),然後對其中[3]有特別要求的部分,用更合適的語言改寫,比如3D游戲中的圖形渲染模塊,性能要求特別高,就可以用C/C++重寫,而後封裝為Python可以調用的擴展類庫。需要注意的是在您使用擴展類庫時可能需要考慮平台問題,某些可能不提供跨平台的實現。
7月20日,IEEE發布2017年編程語言排行榜:Python高居首位。
B. python中稀疏矩陣的怎麼用numpy處理
NumPy是一個關於矩陣運算的庫,熟悉Matlab的都應該清楚,這個庫就是讓python能夠進行矩陣話的操作,而不用去寫循環操作。
下面對numpy中的操作進行總結。
numpy包含兩種基本的數據類型:數組和矩陣。
數組(Arrays)
>>> from numpy import *>>> a1=array([1,1,1]) #定義一個數組>>> a2=array([2,2,2])>>> a1+a2 #對於元素相加array([3, 3, 3])>>> a1*2 #乘一個數array([2, 2, 2])##>>> a1=array([1,2,3])>>> a1
array([1, 2, 3])>>> a1**3 #表示對數組中的每個數做平方array([ 1, 8, 27])##取值,注意的是它是以0為開始坐標,不matlab不同>>> a1[1]2##定義多維數組>>> a3=array([[1,2,3],[4,5,6]])>>> a3
array([[1, 2, 3],
[4, 5, 6]])>>> a3[0] #取出第一行的數據array([1, 2, 3])>>> a3[0,0] #第一行第一個數據1>>> a3[0][0] #也可用這種方式1##數組點乘,相當於matlab點乘操作>>> a1=array([1,2,3])>>> a2=array([4,5,6])>>> a1*a2
array([ 4, 10, 18])
Numpy有許多的創建數組的函數:
import numpy as np
a = np.zeros((2,2)) # Create an array of all zerosprint a # Prints "[[ 0. 0.]
# [ 0. 0.]]"b = np.ones((1,2)) # Create an array of all onesprint b # Prints "[[ 1. 1.]]"c = np.full((2,2), 7) # Create a constant arrayprint c # Prints "[[ 7. 7.]
# [ 7. 7.]]"d = np.eye(2) # Create a 2x2 identity matrixprint d # Prints "[[ 1. 0.]
# [ 0. 1.]]"e = np.random.random((2,2)) # Create an array filled with random valuesprint e # Might print "[[ 0.91940167 0.08143941]
# [ 0.68744134 0.87236687]]"
數組索引(Array indexing)
矩陣
矩陣的操作與Matlab語言有很多的相關性。
#創建矩陣
>>> m=mat([1,2,3])
>>> m
matrix([[1, 2, 3]])
#取值
>>> m[0] #取一行
matrix([[1, 2, 3]])
>>> m[0,1] #第一行,第2個數據2>>> m[0][1] #注意不能像數組那樣取值了
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
File "/usr/lib64/python2.7/site-packages/numpy/matrixlib/defmatrix.py", line 305, in __getitem__
out = N.ndarray.__getitem__(self, index)
IndexError: index 1 is out of bounds for axis 0 with size 1#將Python的列表轉換成NumPy的矩陣
>>> list=[1,2,3]
>>> mat(list)
matrix([[1, 2, 3]])
#矩陣相乘
>>> m1=mat([1,2,3]) #1行3列
>>> m2=mat([4,5,6])
>>> m1*m2.T #注意左列與右行相等 m2.T為轉置操作
matrix([[32]])
>>> multiply(m1,m2) #執行點乘操作,要使用函數,特別注意
matrix([[ 4, 10, 18]])
#排序
>>> m=mat([[2,5,1],[4,6,2]]) #創建2行3列矩陣
>>> m
matrix([[2, 5, 1],
[4, 6, 2]])
>>> m.sort() #對每一行進行排序
>>> m
matrix([[1, 2, 5],
[2, 4, 6]])
>>> m.shape #獲得矩陣的行列數
(2, 3)
>>> m.shape[0] #獲得矩陣的行數2>>> m.shape[1] #獲得矩陣的列數3#索引取值
>>> m[1,:] #取得第一行的所有元素
matrix([[2, 4, 6]])
>>> m[1,0:1] #第一行第0個元素,注意左閉右開
matrix([[2]])
>>> m[1,0:3]
matrix([[2, 4, 6]])
>>> m[1,0:2]
matrix([[2, 4]])35363738394
擴展矩陣函數tile()
例如,要計算[0,0,0]到一個多維矩陣中每個點的距離,則要將[0,0,0]進行擴展。
tile(inX, (i,j)) ;i是擴展個數,j是擴展長度
實例如下:
>>>x=mat([0,0,0])
>>> x
matrix([[0, 0, 0]])
>>> tile(x,(3,1)) #即將x擴展3個,j=1,表示其列數不變
matrix([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> tile(x,(2,2)) #x擴展2次,j=2,橫向擴展
matrix([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])1234567891011121314
C. Python的pandas 數組如何得到索引值,如圖,我要得到ohio 的索引值,應該怎樣做
直接上實例:
df = pd.DataFrame(np.random.randn(5,3),index = list('abcde'),columns = ['one','two','three']) #創建一個數據框
df 內容
第一個arrary代表第幾行,第二個代表第幾列。
如,如何條件的元素存在在:第一行第三列,第三行第一列,....
D. python矩陣
這有函數。你可以調用。
E. python如何輸入矩陣
使用numpy創建矩陣有2種方法,一種是使用numpy庫的matrix直接創建,另一種則是使用array來創建。
首先導入numpy:
(1)import numpy
(2)from numpy import *
(3)import numpy as np
相關推薦:《Python基礎教程》
然後分別用上面說的2種方法來分別構建一個4×3的矩陣,如圖:
F. python mumpy.ndarray矩陣能取某個值的索引嗎
概念理解
索引即通過一個無符號整數值獲取數組里的值。 切片即對數組里某個片段的描述。
G. python循環更新矩陣增加新的列
教你一個很厲害的方式。A,B都是列表數據結構。
比如想選取B的第i行,是這樣的 B[i]
那麼我們要選擇的是哪些行呢?A[0],A[1]...A[5] 是這幾行
於是B[A[0]]...,這樣得到的是一個個單獨的列表,你還要組成新的列表,你只要在外面加個括弧就行
[ B[A[0]],B[A[1]],。。。 ]
進階:一句話搞定
[B[item] for item in A[:5]]
H. python的矩陣可以做什麼
python的numpy庫提供矩陣運算的功能,因此我們在需要矩陣運算的時候,需要導入numpy的包。
計算矩陣對應行列的最大、最小值、和。
3>>>a1=mat([[1,1],[2,3],[4,2]])
>>> a1
matrix([[1, 1],
[2, 3],
[4, 2]])
計算每一列、行的和
>>>a2=a1.sum(axis=0) #列和,這里得到的是1*2的矩陣
>>> a2
matrix([[7, 6]])
>>>a3=a1.sum(axis=1) #行和,這里得到的是3*1的矩陣
>>> a3
matrix([[2],
[5],
[6]])
>>>a4=sum(a1[1,:]) #計算第一行所有列的和,這里得到的是一個數值
>>> a4
5 #第0行:1+1;第2行:2+3;第3行:4+2
計算最大、最小值和索引
>>>a1.max() #計算a1矩陣中所有元素的最大值,這里得到的結果是一個數值
4
>>>a2=max(a1[:,1]) #計算第二列的最大值,這里得到的是一個1*1的矩陣
>>> a2
matrix([[3]])
>>>a1[1,:].max() #計算第二行的最大值,這里得到的是一個一個數值
3
>>>np.max(a1,0) #計算所有列的最大值,這里使用的是numpy中的max函數
matrix([[4, 3]])
>>>np.max(a1,1) #計算所有行的最大值,這里得到是一個矩陣
matrix([[1],
[3],
[4]])
>>>np.argmax(a1,0) #計算所有列的最大值對應在該列中的索引
matrix([[2, 1]])
>>>np.argmax(a1[1,:]) #計算第二行中最大值對應在該行的索引
1
I. python,請問我有10*20的矩陣,我想每行返回行中最大的3個數的索引值怎麼做。原理我懂,求代碼
安裝numpy,利用numpy數組: >>> import numpy >>> array1 = numpy.array([[1, 2], [3, 4]]) >>> array1 array([[1, 2], [3, 4]]) >>> array1 * 2.5 array([[ 2.5, 5. ], [ 7.5, 10. ]]) 如果你用的是python的列表,它的乘法是列表的自我復制
J. 用python的numpy創建一個矩陣
使用numpy創建矩陣有2種方法,一種是使用numpy庫的matrix直接創建,另一種則是使用array來創建。首先載入numpy庫,然後分別用上面說的2種方法來分別構建一個4×3的矩陣,如圖
[1]在高等數學或者線性代數等已經學過了當後面的矩陣的行數等於前面矩陣的列數時,2個矩陣才可以相乘
[2]Hadamard指的是2個m×n的矩陣相乘,結果仍然是m×n的矩陣,結果為對應元素的乘積
[3]單位矩陣是特殊的對角矩陣,零(1)矩陣是指元素全部是0(1)的矩陣
[4]矩陣的第一行是從0開始編號的,python中的各種編號基本上都是從0開始的
注意事項