當前位置:首頁 » 編程語言 » python擬合正態分布

python擬合正態分布

發布時間: 2022-09-21 16:18:16

python+正態分布+擬合是怎麼回事

高斯分布是從負無窮到正無窮的.能限制住就不是高斯分布了.或者你做個近似的,函數生成的數值如果不在[0,1],就重新隨機一次

② 如何用python求解一個帶正態分布和ln函數的方程

import scipy.stats as sta
import math

def option_call(s,x,r,sigma,t):
d1=(math.log(s/x)+(r+sigma**2/2)*t)/(math.sqrt(t)*sigma)
d2=d1-sigma*math.sqrt(t)
c=s*sta.norm.cdf(d1,0,1)-x*sta.norm.cdf(d2,0,1)*math.exp(-r*t)
return c

③ 如何用python求出某已知正態分布的概率密度

Python正態分布概率計算方法,喜歡演算法的夥伴們可以參考學習下。需要用到math模塊。先了解一下這個模塊方法,再來寫代碼會更好上手。
def st_norm(u):
'''標准正態分布'''
import math
x=abs(u)/math.sqrt(2)
T=(0.0705230784,0.0422820123,0.0092705272,
0.0001520143,0.0002765672,0.0000430638)
E=1-pow((1+sum([a*pow(x,(i+1))
for i,a in enumerate(T)])),-16)
p=0.5-0.5*E if u<0 else 0.5+0.5*E
return(p)

def norm(a,sigma,x):
'''一般正態分布'''
u=(x-a)/sigma
return(st_norm(u))

while 1:
'''輸入一個數時默認為標准正態分布
輸入三個數(空格隔開)時分別為期望、方差、x
輸入 stop 停止'''
S=input('please input the parameters:\n')
if S=='stop':break
try:
L=[float(s) for s in S.split()]
except:
print('Input error!')
continue
if len(L)==1:
print('f(x)=%.5f'%st_norm(L[0]))
elif len(L)==3:
print('f(x)=%.5f'%norm(L[0],L[1],L[2]))
else:
print('Input error!')

④ 如何在Python中計算累積正態分布

Python正態分布概率計算方法,喜歡演算法的夥伴們可以參考學習下。需要用到math模塊。先了解一下這個模塊方法,再來寫代碼會更好上手。
def st_norm(u):
'''標准正態分布'''
import math
x=abs(u)/math.sqrt(2)
T=(0.0705230784,0.0422820123,0.0092705272,
0.0001520143,0.0002765672,0.0000430638)
E=1-pow((1+sum([a*pow(x,(i+1))
for i,a in enumerate(T)])),-16)
p=0.5-0.5*E if u<0 else 0.5+0.5*E
return(p)
def norm(a,sigma,x):
'''一般正態分布'''
u=(x-a)/sigma
return(st_norm(u))
while 1:
'''輸入一個數時默認為標准正態分布
輸入三個數(空格隔開)時分別為期望、方差、x
輸入 stop 停止'''
S=input('please input the parameters:\n')
if S=='stop':break
try:
L=[float(s) for s in S.split()]
except:
print('Input error!')
continue
if len(L)==1:
print('f(x)=%.5f'%st_norm(L[0]))
elif len(L)==3:
print('f(x)=%.5f'%norm(L[0],L[1],L[2]))
else:
print('Input error!')

⑤ python求正態分布的隨機數

比如要生成符合f()分布的隨機數,f的反函數是g,那麼先生成定義域內的均勻分布的隨機數,在帶入g(x)計算就好。

對於你這個問題,python有自帶的方法。
#!/usr/bin/python2.7
import random
random.normalvariate(帶三個參數,你試試)

⑥ python 怎麼求標准正態分布某個值

示例:

1、from numpy import *;

2、def rand_Matrix():

3、randArr=random.randn(2,3);

4、randMat=mat(randArr);

5、return randMat;

一種結果如下:

1、matrix([[ 0.3150869 , -0.02041996, -0.15361071],

2、[-0.75507988, 0.80393683, -0.31790917]])

(6)python擬合正態分布擴展閱讀

Python正態分布概率計算方法:

def st_norm(u):

'''標准正態分布'''

import math

x=abs(u)/math.sqrt(2)

T=(0.0705230784,0.0422820123,0.0092705272,

0.0001520143,0.0002765672,0.0000430638)

E=1-pow((1+sum([a*pow(x,(i+1))

for i,a in enumerate(T)])),-16)

p=0.5-0.5*E if u<0 else 0.5+0.5*E

return(p)

def norm(a,sigma,x):

'''一般正態分布'''

u=(x-a)/sigma

return(st_norm(u))

while 1:

'''輸入一個數時默認為標准正態分布

輸入三個數(空格隔開)時分別為期望、方差、x

輸入 stop 停止'''

S=input('please input the parameters: ')

if S=='stop':break

try:

L=[float(s) for s in S.split()]

except:

print('Input error!')

continue

if len(L)==1:

print('f(x)=%.5f'%st_norm(L[0]))

elif len(L)==3:

print('f(x)=%.5f'%norm(L[0],L[1],L[2]))

else:

print('Input error!')

⑦ 如何用python numpy產生一個正態分布隨機數的向量或者矩陣

importnumpyasnp
x=np.random.randn(4,5)#生成一個4*5的服從正態分布(0,1)的數組
print(x)

結果:

array([[1.49880806,0.49802583,-0.73570234,0.6838595,-1.07146133],
[-0.80834618,0.28833047,0.6492072,-1.23454671,-0.42839883],
[0.75936243,-0.67680322,1.06767814,-0.11232622,-0.62300974],
[-1.66010364,-0.60023795,0.35930247,-0.5079359,0.21811627]])

⑧ 如何將已知數據用python寫成正態分布並且畫圖

importnumpyasnp
importmatplotlib.pyplotasplt

y=[2,5,7,10,16,23,20,16,9,6,6,3,1,1]
x=[59,60,61,62,63,64,65,66,67,68,69,70,71,72]
fig,ax=plt.subplots()
ax.bar(x,y,0.3,alpha=0.5,color='b',label='abc')
plt.axis([55,75,0,25])
ax.set_xlabel('XXX')
ax.set_ylabel('YYY')
ax.set_title('ABC')
ax.legend()
fig.tight_layout()
plt.show()

⑨ python怎樣生成正太分布的隨機數

作者:採石工
鏈接:https://www.hu.com/question/39823283/answer/115241445
來源:知乎
著作權歸作者所有,轉載請聯系作者獲得授權。

一般的正態分布可以通過標准正態分布配合數學期望向量和協方差矩陣得到。如下代碼,可以得到滿足一維和二維正態分布的樣本。希望有用,如有錯誤,歡迎指正!

# coding=utf-8

import numpy as np
from numpy.linalg import cholesky
import matplotlib.pyplot as plt

sampleNo = 1000;
# 一維正態分布
# 下面三種方式是等效的
mu = 3
sigma = 0.1
np.random.seed(0)
s = np.random.normal(mu, sigma, sampleNo )
plt.subplot(141)
plt.hist(s, 30, normed=True)

np.random.seed(0)
s = sigma * np.random.randn(sampleNo ) + mu
plt.subplot(142)
plt.hist(s, 30, normed=True)

np.random.seed(0)
s = sigma * np.random.standard_normal(sampleNo ) + mu
plt.subplot(143)
plt.hist(s, 30, normed=True)

# 二維正態分布
mu = np.array([[1, 5]])
Sigma = np.array([[1, 0.5], [1.5, 3]])
R = cholesky(Sigma)
s = np.dot(np.random.randn(sampleNo, 2), R) + mu
plt.subplot(144)
# 注意繪制的是散點圖,而不是直方圖
plt.plot(s[:,0],s[:,1],'+')
plt.show()

⑩ 如何用python使變數服從正太分布

正太分布哈哈

首先,如果想要你的一千萬個數據嚴格服從正態分布,那麼先確定這個分布的數據,也就是均值和方差,N(u,o),這里均值 u=50,方差 o 由你確定,根據正態分布概率密度函數,對於每一個 1~100 之間的整數 x,都可以確定它出現的概率 f(x):

正態分布概率密度函數

而共有 10 000 000 個數字,那麼 10000000*f(x) 就是 x 出現的頻率。

因此,使用一個 101 元素的數組 freq[] 存放這些數出現的頻率,用 f(x)*10000000 逐個計算數組元素,也就是 x 應該出現的次數,假如說 2 一共會出現 3 次,那麼 freq[2]=3,計算出之後放在那裡,作為一個參照。再初始化一個全為 0 的 100 個元素的數組 sam[],記錄每個數字已經出現的次數。之後開始從 1~100 隨機,每隨機一個數字 x 都給 sam[x] 加1,再和 freq[x] 比較,如果超出了 freq[x] 就說明這個數字已經不能再出現了,將其舍棄。記錄隨機成功的次數,達到了 10000000 次即可。

熱點內容
如何用js腳本 發布:2025-01-11 00:47:32 瀏覽:887
日誌和資料庫 發布:2025-01-11 00:47:24 瀏覽:125
windows配置ftp 發布:2025-01-11 00:35:02 瀏覽:656
des演算法代碼c 發布:2025-01-11 00:33:42 瀏覽:805
共享文件夾設置密碼無法訪問 發布:2025-01-11 00:32:49 瀏覽:478
槽鋼演算法 發布:2025-01-11 00:26:21 瀏覽:883
linux命令包 發布:2025-01-10 23:54:26 瀏覽:32
python輪廓 發布:2025-01-10 23:49:23 瀏覽:179
思科配置線怎麼選 發布:2025-01-10 23:48:44 瀏覽:705
解壓水晶泥 發布:2025-01-10 23:27:23 瀏覽:634