當前位置:首頁 » 編程語言 » python數據分析案例實戰

python數據分析案例實戰

發布時間: 2022-09-19 00:40:23

Ⅰ 《python數據分析與挖掘實戰》epub下載在線閱讀,求百度網盤雲資源

《Python數據分析與挖掘實戰》(張良均)電子書網盤下載免費在線閱讀

資源鏈接:

鏈接:https://pan..com/s/1XW_EYuaExQAoUZHdXvz6zw

提取碼:vcfu

書名:Python數據分析與挖掘實戰

作者:張良均

豆瓣評分:7.6

出版社:機械工業出版社

出版年份:2016-1

頁數:335

內容簡介:10餘位數據挖掘領域資深專家和科研人員,10餘年大數據挖掘咨詢與實施經驗結晶。從數據挖掘的應用出發,以電力、航空、醫療、互聯網、生產製造以及公共服務等行業真實案例為主線,深入淺出介紹Python數據挖掘建模過程,實踐性極強。

本書共15章,分兩個部分:基礎篇、實戰篇。基礎篇介紹了數據挖掘的基本原理,實戰篇介紹了一個個真實案例,通過對案例深入淺出的剖析,使讀者在不知不覺中通過案例實踐獲得數據挖掘項目經驗,同時快速領悟看似難懂的數據挖掘理論。讀者在閱讀過程中,應充分利用隨書配套的案例建模數據,藉助相關的數據挖掘建模工具,通過上機實驗,以快速理解相關知識與理論。

基礎篇(第1~5章),第1章的主要內容是數據挖掘概述;第2章對本書所用到的數據挖掘建模工具Python語言進行了簡明扼要的說明;第3章、第4章、第5章對數據挖掘的建模過程,包括數據探索、數據預處理及挖掘建模的常用演算法與原理進行了介紹。

實戰篇(第6~15章),重點對數據挖掘技術在電力、航空、醫療、互聯網、生產製造以及公共服務等行業的應用進行了分析。在案例結構組織上,本書是按照先介紹案例背景與挖掘目標,再闡述分析方法與過程,最後完成模型構建的順序進行的,在建模過程的關鍵環節,穿插程序實現代碼。最後通過上機實踐,加深讀者對數據挖掘技術在案例應用中的理解。

作者簡介:張良均 ,資深大數據挖掘專家和模式識別專家,高級信息項目管理師,有10多年的大數據挖掘應用、咨詢和培訓經驗。為電信、電力、政府、互聯網、生產製造、零售、銀行、生物、化工、醫葯等多個行業上百家大型企業提供過數據挖掘應用與咨詢服務,實踐經驗非常豐富。此外,他精通Java EE企業級應用開發,是廣東工業大學、華南師范大學、華南農業大學、貴州師范學院、韓山師范學院、廣東技術師范學院兼職教授,著有《神經網路實用教程》、《數據挖掘:實用案例分析》、《MATLAB數據分析與挖掘實戰》《R語言數據分析與挖掘實戰》等暢銷書。

Ⅱ Python能做什麼,能夠開發什麼項目

Python是一種計算機程序設計語言。是一種面向對象的動態類型語言,最初被設計用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越來越多被用於獨立的、大型項目的開發。

Python是一種解釋型腳本語言,可以應用於Web 和 Internet開發、科學計算和統計、人工智慧、教育、桌面界面開發、軟體開發、後端開發這些領域。

Python的應用

1、系統編程

提供API(Application Programming Interface應用程序編程介面),能方便進行系統維護和管理,Linux下標志性語言之一,是很多系統管理員理想的編程工具。

2、圖形處理

有PIL、Tkinter等圖形庫支持,能方便進行圖形處理。

3、數學處理

NumPy擴展提供大量與許多標准數學庫的介面。

4、文本處理

python提供的re模塊能支持正則表達式,還提供SGML,XML分析模塊,許多程序員利用python進行XML程序的開發。


5、資料庫編程

程序員可通過遵循Python DB-API(資料庫應用程序編程介面)規范的模塊與Microsoft SQL Server,Oracle,Sybase,DB2,MySQL、SQLite等資料庫通信。python自帶有一個Gadfly模塊,提供了一個完整的SQL環境。

6、網路編程

提供豐富的模塊支持sockets編程,能方便快速地開發分布式應用程序。很多大規模軟體開發計劃例如Zope,Mnet 及BitTorrent. Google都在廣泛地使用它。

7、Web編程

應用的開發語言,支持最新的XML技術。

8、多媒體應用

Python的PyOpenGL模塊封裝了「OpenGL應用程序編程介面」,能進行二維和三維圖像處理。PyGame模塊可用於編寫游戲軟體。

9、pymo引擎

PYMO全稱為python memories off,是一款運行於Symbian S60V3,Symbian3,S60V5, Symbian3, Android系統上的AVG游戲引擎。因其基於python2.0平台開發,並且適用於創建秋之回憶(memories off)風格的AVG游戲,故命名為PYMO。

10、黑客編程

python有一個hack的庫,內置了你熟悉的或不熟悉的函數,但是缺少成就感。

Ⅲ 如何利用python進行數據分析

利用python進行數據分析

鏈接: https://pan..com/s/15VdW4dcuPuIUEPrY3RehtQ

?pwd=3nfn 提取碼: 3nfn

本書也可以作為利用Python實現數據密集型應用的科學計算實踐指南。本書適合剛剛接觸Python的分析人員以及剛剛接觸科學計算的Python程序員。


Ⅳ 《數據科學實戰手冊數據科學實戰手冊(R+Python)》pdf下載在線閱讀,求百度網盤雲資源

《數據科學實戰手冊數據科學實戰手冊(R+Python)》TonyOjeda(托尼·奧傑德)SeanPatrickMurphy(肖恩·派特里克·莫非)BenjaminBengfort(本傑明·班福特)電子書網盤下載免費在線閱讀

鏈接:https://pan..com/s/1EqFNGdBQW46Nj8UdHnVLmA


提取碼:bb2u

書名:數據科學實戰手冊
作者名:Tony Ojeda(托尼·奧傑德) / Sean Patrick Murphy(肖恩·派特里克·莫非) / Benjamin Bengfort(本傑明·班福特)
豆瓣評分:6.2
出版社:人民郵電出版社
出版年份:2016-8-1
頁數:326
內容介紹:
這本書是基於R和Python的數據科學項目案例集錦,內容涵蓋了基於數據科學的所有要素,包括數據採集、處理、清洗、分析、建模、可視化以及數據產品的搭建。案例包含了汽車數據分析、股票市場建模、社交網路分析、推薦系統、地理信息分析,以及Python代碼的計算優化。通過手把手的案例解析,令讀者知其然並知其所以然。業界的數據分析師、數據挖掘工程師、數據科學家都可以讀一讀。想要了解實際工作中如何用數據產生價值的在校學生,或者對數據科學感興趣的人也值得一讀。
作者介紹:
Tony Ojeda(托尼·奧傑德),華盛頓DC數據社區的聯合創始人,一位經驗豐富的數據科學家和企業家,他在佛羅里達國際大學獲得金融碩士學位,並且在德保羅大學獲得了MBA學位。 Sean Patrick Murphy(肖恩·派特里克·莫非),華盛頓DC數據社區的聯合創始人,曾在約翰霍普金斯大學的應用物理實驗室做了15年的高級科學家,他專注於機器學習、信號處理、高性能計算以及建模和模擬。現在他是舊金山、紐約和華盛頓DC多家公司的數據顧問。 Benjamin Bengfort(本傑明·班福特),一位非常有經驗的數據科學家和Python開發者。他曾在軍方、業界和學術界工作過8年。他目前在馬里蘭大學派克學院攻讀計算機博士學位,研究元識別和自然語言處理。他擁有北達科塔州立大學的計算機碩士學位,並是喬治城大學的客座教授。

Ⅳ 求《數據化分析Python實戰》全文免費下載百度網盤資源,謝謝~

《數據化分析Python實戰》網路網盤pdf最新全集下載:
鏈接: https://pan..com/s/1NngzGhehYHLqh1wJqCA7IQ

?pwd=q14j 提取碼: q14j
簡介:數據化分析 Python 實戰是林驥2008年開始從事數據化分析工作,並於2012 年在微博和博客上?分享??的?些學習?得和?作經驗,而編寫的文檔,方便想學習python的朋友。

Ⅵ 《Python數據分析與數據化運營》epub下載在線閱讀全文,求百度網盤雲資源

《Python數據分析與數據化運營(第2版)》(宋天龍)電子書網盤下載免費在線閱讀

鏈接: https://pan..com/s/1W-5NaG7BaBuYws2kAzW9RQ

提取碼: 5dws

書名:Python數據分析與數據化運營(第2版)

作者:宋天龍

豆瓣評分:7.9

出版社:機械工業出版社

出版年份:2019-6-1

頁數:549

內容簡介:

這是一本將數據分析技術與數據使用場景深度結合的著作,從實戰角度講解了如何利用Python進行數據分析和數據化運營。

暢銷書全新、大幅升級,第1版近乎100%的好評,第2版不僅將Python升級到了新的版本,而且對具體內容進行了大幅度的補充和優化。作者是有10餘年數據分析與數據化運營的資深大數據專家,書中對50餘個數據工作流知識點、14個數據分析與挖掘主題、4個數據化運營主題、8個綜合性案例進行了全面的講解,能讓數據化運營結合數據使用場景360°落地。

全書一共9章,分為兩個部分:

第一部分(第1-4章) Python數據分析與挖掘

首先介紹了Python和數據化運營的基本知識,然後詳細講解了Python數據獲取(結構化和非結構化)、預處理、分析和挖掘的關鍵技術和經驗,包含10大類預處理經驗、14個數據分析與挖掘主題,50餘個知識點。

第二部分(第5~9章) Python數據化運營

這是本書的核心,詳細講解了會員運營、商品運營、流量運營和內容運營4大主題,以及提升數據化運營價值的方法。每個運營主題中都包含了基本知識、評估指標、應用場景、數據分析模型、數據分析小技巧、數據分析大實話以及2個綜合性的應用案例。

作者簡介:

宋天龍(TonySong)

大數據技術專家,觸脈咨詢合夥人兼副總裁,前Webtrekk中國區技術和咨詢負責人(Webtrekk,德國的在線數據分析服務提供商)。

擅長數據挖掘、建模、分析與運營,精通端到端數據價值場景設計、業務需求轉換、數據結構梳理、數據建模與學習以及數據工程交付。在電子商務、零售、銀行、保險等多個行業擁有豐富的數據項目工作經驗,參與過集團和企業級數據體系規劃、DMP與數據倉庫建設、大數據產品開發、網站流量系統建設、個性化智能推薦與精準營銷、企業大數據智能等。參與實施客戶案例包括聯合利華、Webpower、德國OTTO集團電子商務(中國)、Esprit中國、豬八戒網、順豐優選、樂視商城、泰康人壽、酒仙網、國美在線、迪信通等。

Ⅶ 如何利用python語言進行數據分析

隨著互聯網的不斷發展,數據分析已經成為指導我們工作方向的主要依據之一,而今天我們就一起來了解一下,如何利用python編程開發來進行數據分析,下面電腦培訓http://www.kmbdqn.com/就開始今天的主要內容吧。

為什麼要學習Python進行數據分析?

Python作為一種用於數據分析的語言,近引起了廣泛的興趣。我以前學過Python的基礎知識。下面是一些支持學習Python的原因:

開源-免費安裝

很棒的在線社區

簡單易學

可以成為數據科學和基於web的分析產品生成的通用語言

不用說,它也有一些缺點:

它是一種解釋語言而不是編譯語言——因此可能會佔用更多的CPU時間。但是,考慮到節省了程序員的時間(由於易於學習),它仍然是一個不錯的選擇。

Python 2.7 和 3.4

這是Python中受爭議的話題之一。您一定會遇到它,特別是如果您是初學者的話。這里沒有正確/錯誤的選擇。這完全取決於情況和你的需要。我會試著給你一些建議來幫助你做出明智的選擇。

為什麼Python 2.7 ?

很棒的社區支持!這是你早年需要的東西。Python 2於2000年末發布,已經使用了超過15年。

過多的三方庫!雖然許多庫都提供了3.x支持,但仍然有很多模塊只能在2.x版本上工作。如果您計劃將Python用於特定的應用程序,比如高度依賴外部模塊的web開發,那麼使用2.7可能會更好。


Ⅷ Python做大數據,都需要學習什麼,比如哪些框架,庫等!人工智慧呢請盡量詳細點!

階段一、人工智慧篇之Python核心
1、Python掃盲
2、面向對象編程基礎
3、變數和基本數據類型
4、Python機器學習類庫
5、Python控制語句與函數
6.、Python資料庫操作+正則表達式
7、Lambda表達式、裝飾器和Python模塊化開發
階段二、人工智慧篇之資料庫交互技術
1、初識MySQL資料庫
2、創建MySQL資料庫和表
3、MySQL資料庫數據管理
4、使用事務保證數據完整性
5、使用DQL命令查詢數據
6、創建和使用索引
7、MySQL資料庫備份和恢復
階段三、人工智慧篇之前端特效
1、HTML+CSS
2、Java
3、jQuery
階段四、人工智慧篇之Python高級應用
1、Python開發
2、資料庫應用程序開發
3、Python Web設計
4、存儲模型設計
5、智聯招聘爬蟲
6、附加:基礎python爬蟲庫
階段五、人工智慧篇之人工智慧機器學習篇
1、數學基礎
2、高等數學必知必會
3、Numpy前導介紹
4、Pandas前導課程
5、機器學習
階段六、人工智慧篇之人工智慧項目實戰
1、人臉性別和年齡識別原理
2、CTR廣告點擊量預測
3、DQN+遺傳演算法
4、圖像檢索系統
5、NLP閱讀理解
階段七、人工智慧篇之人工智慧項目實戰篇
1、基於Python數據分析與機器學習案例實戰教程
2、基於人工智慧與深度學習的項目實戰
3、分布式搜索引擎ElasticSearch開發
4、AI法律咨詢大數據分析與服務智能推薦項目
5、電商大數據情感分析與AI推斷實戰項目
6、AI大數據互聯網電影智能推薦

Ⅸ 如何用python進行數據分析

1、Python數據分析流程及學習路徑

數據分析的流程概括起來主要是:讀寫、處理計算、分析建模和可視化四個部分。在不同的步驟中會用到不同的Python工具。每一步的主題也包含眾多內容。

根據每個部分需要用到的工具,Python數據分析的學習路徑如下:

相關推薦:《Python入門教程》

2、利用Python讀寫數據

Python讀寫數據,主要包括以下內容:

我們以一小段代碼來看:

可見,僅需簡短的兩三行代碼即可實現Python讀入EXCEL文件。

3、利用Python處理和計算數據

在第一步和第二步,我們主要使用的是Python的工具庫NumPy和pandas。其中,NumPy主要用於矢量化的科學計算,pandas主要用於表型數據處理。

4、利用Python分析建模

在分析和建模方面,主要包括Statsmdels和Scikit-learn兩個庫。

Statsmodels允許用戶瀏覽數據,估計統計模型和執行統計測試。可以為不同類型的數據和每個估算器提供廣泛的描述性統計,統計測試,繪圖函數和結果統計列表。

Scikit-leran則是著名的機器學習庫,可以迅速使用各類機器學習演算法。

5、利用Python數據可視化

數據可視化是數據工作中的一項重要內容,它可以輔助分析也可以展示結果。

Ⅹ 利用python實現數據分析

鏈接:

提取碼:7234

煉數成金:Python數據分析。Python是一種面向對象、直譯式計算機程序設計語言。也是一種功能強大而完善的通用型語言,已經具有十多年的發展歷史,成熟且穩定。Python 具有腳本語言中最豐富和強大的類庫,足以支持絕大多數日常應用。 Python語法簡捷而清晰,具有豐富和強大的類庫。它常被昵稱為膠水語言,它能夠很輕松的把用其他語言製作的各種模塊(尤其是C/C++)輕松地聯結在一起。

課程將從Python的基本使用方法開始,一步步講解,從ETL到各種數據分析方法的使用,並結合實例,讓學員能從中借鑒學習。

課程目錄:

Python基礎

Python的概覽——Python的基本介紹、安裝與基本語法、變數類型與運算符

了解Python流程式控制制——條件、循環語句與其他語句

常用函數——函數的定義與使用方法、主要內置函數的介紹

.....

熱點內容
sae連接資料庫 發布:2025-01-11 15:55:09 瀏覽:620
斷點上傳續傳 發布:2025-01-11 15:50:23 瀏覽:247
編程說明文 發布:2025-01-11 15:50:21 瀏覽:698
格式化數組php 發布:2025-01-11 15:43:52 瀏覽:7
伺服器能查ip嗎 發布:2025-01-11 15:27:36 瀏覽:911
住宅燈如何配置 發布:2025-01-11 15:27:35 瀏覽:621
手機取款密碼在哪裡設置 發布:2025-01-11 15:17:28 瀏覽:970
安卓手機飢荒在哪裡下 發布:2025-01-11 15:16:27 瀏覽:834
壓縮軟膠 發布:2025-01-11 15:10:08 瀏覽:971
安卓怎麼恢復刪除照片恢復軟體 發布:2025-01-11 14:55:49 瀏覽:172