當前位置:首頁 » 編程語言 » pythonsumaxis1

pythonsumaxis1

發布時間: 2022-09-18 15:31:58

1. python中的sum為什麼返回的還是數組

Python中的sum函數,無第二參數時,返回的是數值不是數組,數值為參數1中的數組或其它可迭代對象的全加之和。

在下列幾種情況下,sum函數返回數組:(Python 3版本)

  1. 使用了第二參數為axis=0,並且參數1是二維對象,則按列相加並返回數組;

  2. 使用了第二參數為axis=1,並且參數1是二維對象,則按行相加並返回數組;

  3. 導入了Numpy模塊,並使用了Numpy中的sum函數,並且參數1是二維對象,則默認就是axis=0,即按列相加並返回數組;

importnumpyasnp
#python中自帶的sum
sum([[1,2,3],[4,5,5]])#返回數值20
sum([[1,2,3],[4,5,5]],axis=0)#返回數組[578]
sum([[1,2,3],[4,5,5]],axis=1)#返回數組[614]
#Numpy中的sum
a=np.sum([[1,2,3],[4,5,5]])#返回數組[578]

註:NumPy是Python的一種開源的數值計算擴展。

2. Python,的numpy模塊中有沒有 階乘函數

有階乘函數,Numpy中,mat必須是2維的,但是array可以是多維的(1D,2D,3D····ND). Matrix是Array的一個小的分支,包含於Array。所以matrix 擁有array的所有特性。

在numpy中matrix的主要優勢是:相對簡單的乘法運算符號。例如,a和b是兩個matrices,那麼a*b,就是矩陣積。

若a=mat([1,2,3])是矩陣,則 a.A 則轉換成了數組,反之,a.M則轉換成了矩陣。

(2)pythonsumaxis1擴展閱讀:

常用的Numpy運算:

取矩陣中的某一行ss[1,:]或該行的某兩列ss[1,0:2]

將數組轉換成矩陣randMat=mat(random.rand(4,4))

矩陣求逆randMat.I

單位陣eye(4)

零矩陣zeros((x,y))建立x行y列的零矩陣。

最大值和最小值a.max(),a.min(),而a.max(0)表示按列選取每列的最大值。最大/小元素的下標a.argmax(),a.argmin()

#作為方法x.sum() #所有元素相加x.sum(axis=0) #按列相加x.sum(axis=1) #按行相加#作為函數sum(a,axis=0)ss.mean()

mean(a,axis=0(或1)) #按列或行求均值var(a)var(a,axis=0(或1)) #按列或行求方差。

std(a)std(a,axis=0(或1)) #按列或行求標准差ss.T或ss.transpose() #轉置。



3. python axis是什麼意思

python axis的意思是:1、【axis=0】表述列,【axis=1】表述行;2、等式【axis=i】操作就是沿第i維變化的方向進行。
python axis的意思是:
axis=0表述列
axis=1表述行
就記住axis=i,操作就是沿第i維變化的方向進行;
對於一個4*3*2*3的數組:
axis=0,操作時只有第0維的下標變化其他不變。
axis=1,操作時只有第1維的下標變化其他不變。
axis=2,操作時只有第2維的下標變化其他不變。
axis=3,操作時只有第3維的下標變化其他不變。
相關學習推薦:python視頻
以上就是小編分享的關於python axis是什麼意思的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

4. 在使用python進行編程的過程中,設置屬性axis=1,表示的是什麼含義

摘要 如果我們調用df.mean(axis=1),我們將得到按行計算的均值

5. python中刪除數據框某個行時,語法df.drop('列名',axis=1)中,使用axis=1,axis=1不是表示行么

<pre t="code" l="python">data.drop(n)可以刪除第i行
import pandas as pd
data=pd.DataFrame([[1,2,3],[4,5,6]])
print data.drop(0)輸出結果為 0 1 21 4 5 6

6. python對excel操作

Python對於Excel的操作是多種多樣的,掌握了相關用法就可以隨心所欲的操作數據了!

操作xls文件

xlrd(讀操作):

import xlrd

1、引入xlrd模塊

workbook=xlrd.open_workbook("36.xls")

2、打開[36.xls]文件,獲取excel文件的workbook(工作簿)對象

names=workbook.sheet_names()

3、獲取所有sheet的名字

worksheet=workbook.sheet_by_index(0)

4、通過sheet索引獲得sheet對象

worksheet為excel表第一個sheet表的實例化對象

worksheet=workbook.sheet_by_name("各省市")

5、通過sheet名獲得sheet對象

worksheet為excel表sheet名為【各省市】的實例化對象

nrows=worksheet.nrows

6、獲取該表的總行數

ncols=worksheet.ncols

7、獲取該表的總列數

row_data=worksheet.row_values(n)

8、獲取該表第n行的內容

col_data=worksheet.col_values(n)

9、獲取該表第n列的內容

cell_value=worksheet.cell_value(i,j)

10、獲取該表第i行第j列的單元格內容

xlwt(寫操作):

import xlwt

1、引入xlwt模塊

book=xlwt.Workbook(encoding="utf-8")

2、創建一個Workbook對象,相當於創建了一個Excel文件

sheet = book.add_sheet('test')

3、創建一個sheet對象,一個sheet對象對應Excel文件中的一張表格。

sheet.write(i, j, '各省市')

4、向sheet表的第i行第j列,寫入'各省市'

book.save('Data\\36.xls')

5、保存為Data目錄下【36.xls】文件

操作xlsx文件

openpyxl(讀操作):

import openpyxl

1、引入openpyxl模塊

workbook=openpyxl.load_workbook("36.xlsx")

2、打開[36.xlsx]文件,獲取excel文件的workbook(工作簿)對象

names=workbook.sheetnames

worksheet=workbook.worksheets[0]

worksheet=workbook["各省市"]

ws = workbook.active

6、獲取當前活躍的worksheet,默認就是第一個worksheet

nrows=worksheet.max_row

7、獲取該表的總行數

ncols=worksheet.max_column

8、獲取該表的總列數

content_A1= worksheet['A1'].value

9、獲取該表A1單元格的內容

content_A1=worksheet.cell(row=1,column=1).value

10、獲取該表第1列第1列的內容

openpyxl(寫操作):

workbook=openpyxl.Workbook()worksheet = workbook.active

3、獲取當前活躍的worksheet,默認就是第一個worksheet

worksheet.title="test"

4、worksheet的名稱設置為"test"

worksheet = workbook.create_sheet()

5、創建一個新的sheet表,默認插在工作簿末尾

worksheet.cell(i,j,'空')

6、第i行第j列的值改成'空'

worksheet["B2"]="空"

7、將B2的值改成'空'

worksheet.insert_cols(1)

8、在第一列之前插入一列

worksheet.append(["新增","台灣省"])

9、添加行

workbook.save("Data\\36.xlsx")

10、保存為Data目錄下【36.xlsx】文件

pandas處理excel文件

pandas操作:

import pandas as pd

1、引入pandas模塊

data = pd.read_excel('36.xls')

2、讀取[36.xls]或者[36.xlsx]文件

data = pd.read_csv('36.csv')

3、讀取[36.csv]文件

data=data.dropna(subset=['店鋪'])

4、過濾掉data店鋪列有缺失的數據

data.sort_values("客戶網名", inplace=True)

5、將data數據按照客戶網名列進行從小到大排序

data = pd.read_csv(36.csv, skiprows = [0,1,2],sep = None, skipfooter = 4)

6、讀取[36.csv]文件,前三行和後四行的數據略過

data = data.fillna('空')

7、將data中的空白處填充成'空'

data.drop_plicates('訂單','first',inplace=True)

8、data中的數據,按照【訂單】列做去重處理,保留第一條數據

data=pd.DataFrame(data,columns=['訂單','倉庫'])

9、只保留data中【訂單】【倉庫】列的數據

data = data[(data[u'展現量'] > 0)]

10、只保留【展現量】列中大於0的數據

data= data[data["訂單"].str.contains('000')]

11、只保留【訂單】列中包含'000'的數據

data= data[data["倉庫"]=='正品倉']

12、只保留【倉庫】列是'正品倉'的數據

xs= data[data["店鋪"]=='南極人']['銷售額']

13、獲取店鋪是南極人的銷售額數據

data['訂單'] = data['訂單'].str[3:7]

14、【訂單】列的值只保留4-8個位元組的值

data["郵資"] = np.where((data['店鋪'].str.contains('T|t')) & -(data['倉庫'] == '代發倉'), 8, data['郵資'])

15、滿足店鋪列包含 T 或 t 並且倉庫不等於'代發倉'的話,將郵資的值改成8,否則值不變

data = np.array(data).tolist()

16、將data從DataFrame轉換成列表

data=pd.DataFrame(data)

17、將列表轉換成DataFrame格式

zhan = data[u'展現'].sum().round(2)

18、將data中所有展現列數據求和,並取兩位小數

sum=data.groupby(['店鋪'])['刷單'].sum()

19、將data中按照店鋪對刷單進行求和

counts=data['店鋪'].value_counts()

20、將data按照店鋪進行計算

avg=data.groupby(['店鋪'])['刷單'].mean()

21、將data按照店鋪對刷單進行求平均數

count = pd.concat([counts,sum], axis=1, ignore_index=True, sort=True)

22、將counts和sum兩個DataFrame進行了組合

count=count.rename(index=str, columns={0: "訂單", 1: "成本"})

23、將新生成的DataFrame列名進行修改

data = pd.merge(sum, counts, how='left', left_on='店鋪', right_on='店鋪')

24、將列表轉換成DataFrame格式

from openpyxl import Workbook 

wb=Workbook()  

ws1=wb.active 

data.to_excel('36.xlsx') 

wb.close()

25、data完整的寫入到關閉過程,執行此操作的時候【36.xlsx】不能是打開狀態

excel格式操作

樣式處理:

1、打開【36.xlsx】

sheet=workbook.worksheets[0]

2、將第一個sheet對象賦值給sheet

sheet.column_dimensions['A'].width = 20.0

3、將A列的寬度設置為20

sheet.row_dismensions[1].height = 20.0

4、將第一行的行高設置為20

sheet.merge_cells('A1:A2')

5、將sheet表A1和A2單元格合並

sheet.unmerge_cells('A1:A2')

6、將sheet表A1和A2單元格取消合並

sheet.insert_rows(2,2)

7、將sheet表從第2行插入2行

sheet.insert_cols(3,2)

8、將sheet表從第3列插入2列

sheet.delete_rows(2)

9、刪除第2行

sheet.delete_cols(3, 2)

10、將sheet表從第3列開始刪除2列

from openpyxl.styles import Font, Border, PatternFill, colors, Alignment

11、分別引入字體、邊框、圖案填充、顏色、對齊方式

sheet.cell(i,j).font = Font(name='Times New Roman', size=14, bold=True, color=colors.WHITE)

12、設置sheet表第 i 行第 j 列的字體

sheet.cell(i,j).alignment = Alignment(horizontal='center', vertical='center')

13、設置sheet表第 i 行第 j 列的字體對齊方式

left, right, top, bottom = [Side(style='thin', color='000000')] * 4sheet.cell(i,j).border = Border(left=left, right=right, top=top, bottom=bottom)

14、引入邊框樣式並調用

fill = PatternFill("solid", fgColor="1874CD")sheet.cell(1,j).fill = fill

15、引入填充樣式,並調用

import xlrd

from openpyxl import Workbook

from openpyxl import load_workbook

workbook=load_workbook(filename='C:/Users/EDZ/Desktop/工作/2021.08.03/大兄弟.xlsx')

sheet=workbook.active

sheet.insert_cols(idx=1)

sheet.merge_cells(A1:A3)

sheet['A1']=['上海','山東','浙江']

7. python中刪除數據框某個行時,語法df.drop('列名',axis=1)中,使用axis=1,axis=1不是表示行么

其實問題理解axis有問題,也許簡單的來記就是axis=0代表往跨行(down),而axis=1代表跨列(across),作為方法動作的副詞。換句話說:使用0值表示沿著每一列或行標簽\索引值向下執行方法;使用1值表示沿著每一行或者列標簽模向執行對應的方法。
軸axis用來為超過一維的數組定義的屬性,二維數據擁有兩個軸:第0軸沿著行的垂直往下,第1軸沿著列的方向水平延伸。
所以問題當中df.drop(『列名』,
axis=1)代表將『列名』對應的列標簽(們)沿著水平的方向依次刪掉。

8. python數組求和

在數組和矩陣中使用sum: 對數組b和矩陣c,代碼b.sum(),np.sum(b),c.sum(),np.sum(c)都能將b、c中的所有元素求和並返回單個數值。

但是對於二維數組b,代碼b.sum(axis=0)指定對數組b對每列求和,b.sum(axis=1)是對每行求和,返回的都是一維數組(維度降了一維)。

而對應矩陣c,c.sum(axis=0)和c.sum(axis=1)也能實現對列和行的求和,但是返回結果仍是二維矩陣。

# 定義函數,arr 為數組,n 為數組長度,可作為備用參數,這里沒有用到。

def_sum(arr,n):

# 使用內置的 sum 函數計算。

return(sum(arr))

# 調用函數

arr=[]

# 數組元素

arr=[12,3,4,15]

# 計算數組元素的長度

n=len(arr)

ans=_sum(arr,n)

# 輸出結果

print('數組元素之和為',ans)

(8)pythonsumaxis1擴展閱讀:

python數組使用:

python 數組支持所有list操作,包括 .pop、.insert 和 .extend。另外,數組還提供從文件,讀取和存入文件的更快的方法,列如如 .frombytes 和 .tofile,如下所示我們定義一個數組。

from array import arrayarr=array('d',(a for a in range(5)))print(arr)。

arr=array('d',(a for a in range(5)))從這個代碼中可以看出,一個數組的定義需要傳入的不只是值還有類型。

可以是(must be c, b, B, u, h, H, i, I, l, L, f or d)。



熱點內容
電腦改文檔伺服器 發布:2025-01-11 16:41:14 瀏覽:869
編譯匯編語言實例 發布:2025-01-11 16:36:55 瀏覽:670
海康ntp校時伺服器地址 發布:2025-01-11 16:34:35 瀏覽:743
伺服器運行超時怎麼辦 發布:2025-01-11 16:34:32 瀏覽:298
人妖迅雷種子ftp 發布:2025-01-11 16:33:04 瀏覽:916
python將列表轉化為字元串 發布:2025-01-11 16:32:11 瀏覽:192
大疆穩定器wifi連接初始密碼多少 發布:2025-01-11 16:25:36 瀏覽:890
專線伺服器運行的項目如何訪問 發布:2025-01-11 16:15:13 瀏覽:720
小米智能攝像機雲存儲 發布:2025-01-11 16:12:08 瀏覽:556
lnmpphp升級 發布:2025-01-11 16:12:07 瀏覽:326