當前位置:首頁 » 編程語言 » python股市數據

python股市數據

發布時間: 2022-09-08 20:01:00

python怎麼抓新浪百度股票數據 datareader

應該都是可以獲取的,一般獲取數據有兩個方法,get和post,在源碼能夠顯示的使用的是get,而post一般是用非同步載入的形式進行展現的。

⑵ 如何用python代碼判斷一段范圍內股票最高點

Copyright © 1999-2020, CSDN.NET, All Rights Reserved




登錄

python+聚寬 統計A股市場個股在某時間段的最高價、最低價及其時間 原創
2019-10-12 09:20:50

開拖拉機的大寶

碼齡4年

關注
使用工具pycharm + 聚寬數據源,統計A股市場個股在某時間段的最高價、最低價及其時間,並列印excel表格輸出

from jqdatasdk import *
import pandas as pd
import logging
import sys
logger = logging.getLogger("logger")
logger.setLevel(logging.INFO)

# 聚寬數據賬戶名和密碼設置
auth('username','password')

#獲取A股列表,包括代號,名稱,上市退市時間等。
security = get_all_securities(types=[], date=None)
pd2 = get_all_securities(['stock'])

# 獲取股票代號
stocks = list(get_all_securities(['stock']).index)

# 獲取股票名稱
stocknames = pd2['display_name']

start_date = '2015-01-01'
end_date = '2018-12-31'
def get_stocks_high_low(start_date,end_date):
# 新建表,表頭列
# 為:"idx","stockcode","stockname","maxvalue","maxtime","lowvalue","lowtime"
result = pd.DataFrame(columns=["idx", "stockcode", "stockname", "maxvalue", "maxtime", "lowvalue", "lowtime"])
for i in range(0,stocks.__len__()-1):
pd01 = get_price(stocks[i], start_date, end_date, frequency='daily',
fields=None, skip_paused=False,fq='pre', count=None)
result=result.append(pd.DataFrame({'idx':[i],'stockcode':[stocks[i]],'stockname':
[stocknames[i]],'maxvalue':[pd01['high'].max()],'maxtime':
[pd01['high'].idxmax()],'lowvalue': [pd01['low'].min()], 'lowtime':
[pd01['low'].idxmin()]}),ignore_index=True)

result.to_csv("stock_max_min.csv",encoding = 'utf-8', index = True)
logger.warning("執行完畢!

⑶ 如何使用python抓取炒股軟體中資金數據

股票配資簡單的說就是加杠桿,比如你有10萬,可以做80萬的事情0434

⑷ python對股票分析有什麼作用

你好,Python對於股票分析來說,用處是很大的
Python,用數據軟體分析可以做股票的量化程序,因為股票量化是未來的一種趨勢,能夠解決人為心理波動和沖動下單等不良行為,所以學好python量化的話,那麼對股票來說有很大很大幫助

⑸ PYthon遍歷語句求指導,如何通過python下載某時期所有股票日線信息然後存文件

你可以去官網看看怎麼去做,

⑹ 怎樣用python處理股票

用Python處理股票需要獲取股票數據,以國內股票數據為例,可以安裝Python的第三方庫:tushare;一個國內股票數據獲取包。可以在網路中搜索「Python tushare」來查詢相關資料,或者在tushare的官網上查詢說明文檔。

⑺ 如何使用Python獲取股票分時成交數據

導個tushare完事

⑻ 如何用python獲取股票數據

在Python的QSTK中,是通過s_datapath變數,定義相應股票數據所在的文件夾。一般可以通過QSDATA這個環境變數來設置對應的數據文件夾。具體的股票數據來源,例如滬深、港股等市場,你可以使用免費的WDZ程序輸出相應日線、5分鍾數據到s_datapath變數所指定的文件夾中。然後可使用Python的QSTK中,qstkutil.DataAccess進行數據訪問

⑼ 如何用python計算某支股票持有90天的收益率

首先你要先獲得這支股票90天的數據,可以存在一個arry中。
然後計算收益率 r = (arry[89]-arry[0])/arry[0],如果要計算任意連續90天的話只要循環就可以了。
許多人更喜歡去做短線,因為短線刺激,無法承受長線持股待漲的煎熬,可是假如不會做短線,則可能會導致虧得更快。做T的秘籍大家一定很想知道,今天就給大家講講。
我准備了好處給大家,機構精選的牛股大盤點!希望大家不要錯過--速領!今日機構牛股名單新鮮出爐!
一、股票做T是什麼意思
現在市場上,A股的交易市場模式是T+1,意思就是今天買的股票,只有明天才能賣出。
而股票做T,當天買入的股票在當天賣出,這就是股票進行T+0的交易操作,投資人在可交易的一天通過股票的漲幅和跌停有了股票差價,在股票大幅下跌時趕緊買入,漲得差不多之後再將買入的部分賣出,就是用這種方法賺錢的。
假如說,在昨天我手裡還有1000股的xx股票,市價10元/股。今天一大早發現該股居然跌到了9.5元/股,然後趁機買入了1000股。結果到了下午時,這只股票的價格就突然間大幅上漲到一股10.5元,我就急忙地以10.5/股的價格售出1000股,然後獲取(10.5-9.5)×1000=1000元的差價,這就是做T。
但是,不是每種股票做T都合適!正常來說,那些日內振幅空間較大的股票,它們是適合去做T的,比如說,每日能有5%的振幅空間。想知道某隻股票適不適合的,點開這里去看一下吧,專業的人員會為你估計挑選出最適合你的T股票!【免費】測一測你的股票到底好不好?

二、股票做T怎麼操作
怎麼才能夠把股票做到T?正常情況下分為兩種方式,分別為正T和倒T。
正T即先買後賣,投資手裡,手裡面賺有這款股票,在當天股票開盤的時候下跌到了最低點時,投資者買入1000股,等到股票變高的時候在高點,將這1000股徹底賣出,持有的總股票數還是跟以前一樣,T+0的效果這樣就能夠達到了,又能夠享有中間賺取的差價。
而倒T即先賣後買。投資者通過嚴密計算得出,股票存在下降風險,因此在高位點先賣出手中的一部分股票,接著等股價回落後再去買進,總量仍舊有辦法保持不變,然而,收益是會產生的。
比方投資者,他佔有該股2000股,而10元/股是當天早上的市場價,覺得持有的股票在短時間內就會有所調整,,於是賣出手中的1500股,等股票跌到一股只需要9.5元時,這只股票差不多就已經能讓他們感到滿意了,再買入1500股,這就賺取了(10-9.5)×1500=750元的差價。
這時有人就問了,那要如何知道買入的時候正好是低點,賣出的時候正好是高點?
其實有一款買賣點捕捉神器,它能夠判斷股票的變化趨勢,絕對能讓你每次都抓住重點,點開鏈接就能立刻領取到了:【智能AI助攻】一鍵獲取買賣機會

應答時間:2021-09-23,最新業務變化以文中鏈接內展示的數據為准,請點擊查看

⑽ 如何選取過去每個月股票的市值 python

類似,可以修改一下
股票漲跌幅數據是量化投資學習的基本數據資料之一,下面以python代碼編程為工具,獲得所需要的歷史數據。主要步驟有:
(1) #按照市值從小到大的順序活得N支股票的代碼;
(2) #分別對這一百隻股票進行100支股票操作;
(3) #獲取從2016.05.01到2016.11.17的漲跌幅數據;
(4) #選取記錄大於40個的數據,去除次新股;
(5) #將文件名名為「股票代碼.csv」。
具體代碼如下:
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 17 23:04:33 2016
獲取股票的歷史漲跌幅,並分別存為csv格式
@author: yehxqq151376026
"""

import numpy as np
import pandas as pd

#按照市值從小到大的順序活得100支股票的代碼
df = get_fundamentals(
query(fundamentals.eod_derivative_indicator.market_cap)
.order_by(fundamentals.eod_derivative_indicator.market_cap.asc())
.limit(100),'2016-11-17', '1y'
)

#分別對這一百隻股票進行100支股票操作
#獲取從2016.05.01到2016.11.17的漲跌幅數據
#選取記錄大於40個的數據,去除次新股
#將文件名名為「股票代碼.csv」
for stock in range(100):
priceChangeRate = get_price_change_rate(df['market_cap'].columns[stock], '20160501', '20161117')
if priceChangeRate is None:
openDays = 0
else:
openDays = len(priceChangeRate)
if openDays > 40:
tempPrice = priceChangeRate[39:(openDays - 1)]
for rate in range(len(tempPrice)):
tempPrice[rate] = "%.3f" %tempPrice[rate]
fileName = ''
fileName = fileName.join(df['market_cap'].columns[i].split('.')) + '.csv'
fileName
tempPrice.to_csv(fileName)

熱點內容
ecstore資料庫 發布:2025-01-13 07:29:43 瀏覽:295
手機設置密碼忘記了怎麼解開 發布:2025-01-13 07:28:29 瀏覽:19
存儲卡交流 發布:2025-01-13 07:16:06 瀏覽:982
php字元串浮點數 發布:2025-01-13 07:15:28 瀏覽:997
python排序cmp 發布:2025-01-13 07:09:04 瀏覽:71
雲腳本精靈 發布:2025-01-13 07:03:27 瀏覽:617
高維訪問 發布:2025-01-13 07:03:23 瀏覽:974
保衛蘿卜有腳本嗎 發布:2025-01-13 06:30:29 瀏覽:741
天貓上傳 發布:2025-01-13 06:06:35 瀏覽:156
php處理並發 發布:2025-01-13 06:03:44 瀏覽:283