php大數據
1. 是學大數據好還是學php好
大數據是現在的發展趨勢,當然不可缺少人工智慧AI,馬雲之前就已經提出,未來將是大數據時代。學哪一種,你需要結合個人能力和喜好,喜歡做web可以學php,想跟大量數據打交道可能學學大數據,分析數據等等!
2. PHP-大數據量怎麼處理優化
php跟數據量大好像沒有直接的關系,應該優化的資料庫
3. php採集大數據的方案
1、建議你讀寫數據和下載圖片分開,各用不同的進程完成。
比如說,取數據用get-data.php,下載圖片用get-image.php。
2、多進程的話,php可以簡單的用pcntl_fork()。這樣可以並發多個子進程。
但是我不建議你用fork,我建議你安裝一個gearman worker。這樣你要並發幾個,就啟幾個worker,寫代碼簡單,根本不用在代碼里考慮thread啊,process等等。
3、綜上,解決方案這樣:
(1)安裝gearman worker。
(2)寫一個get-data.php,在crontab里設置它每5分鍾執行一次,只負責讀數據,然後把讀回來的數據一條一條的扔到 gearman worker的隊列里;
然後再寫一個處理數據的腳本作為worker,例如叫process-data.php,這個腳本常駐內存。它作為worker從geraman 隊列里讀出一條一條的數據,然後跟你的資料庫老數據比較,進行你的業務邏輯。如果你要10個並發,那就啟動10個process-data.php好了。處理完後,如果圖片地址有變動需要下載圖片,就把圖片地址扔到 gearman worker的另一個隊列里。
(3)再寫一個download-data.php,作為下載圖片的worker,同樣,你啟動10個20個並發隨便你。這個進程也常駐內存運行,從gearman worker的圖片數據隊列里取數據出來,下載圖片
4、常駐進程的話,就是在代碼里寫個while(true)死循環,讓它一直運行好了。如果怕內存泄露啥的,你可以每循環10萬次退出一下。然後在crontab里設置,每分鍾檢查一下進程有沒有啟動,比如說這樣啟動3個process-data worker進程:
* * * * * flock -xn /tmp/process-data.1.lock -c '/usr/bin/php /process-data.php >> /dev/null 2>&1'
* * * * * flock -xn /tmp/process-data.2.lock -c '/usr/bin/php /process-data.php >> /dev/null 2>&1'
* * * * * flock -xn /tmp/process-data.3.lock -c '/usr/bin/php /process-data.php >> /dev/null 2>&1'
不知道你明白了沒有
4. php 調用 大數據 顯示不全問題。。
5萬條?
恐怖,php執行是有一個時間的,不是無止境的執行,超時後,就會停止執行。所以返回有多有多有少了!
解決方法:
1、有個函數是設定php腳本執行超時時間的,加在文件的頭部,你設定多久就多久,具體哪個函數,忘記了,自己網路一下
2、修改php,.ini裡面的配置,具體也忘記了,自己網路一下
不過不建議你一個頁面返回這么多數據,就算能全部返回,也網頁打開速度也會很慢啊,搞成分頁顯示,不是很好嗎!@
5. 後端(PHP或者python)開發、大數據開發哪個未來發展更好
PHP主要用來做網站開發,許多小型網站都用PHP開發,PHP是開源的,這是使得PHP經久不衰的原因。在電商、社區等方面,PHP具備非常成熟的開源代碼和模板,因此使得PHP應用極為廣泛。劣勢是受眾較小,有可替代性。
大數據技術的應用,電商平台通過收集用戶的購買記錄和瀏覽記錄,加以分析和處理,然後主動向用戶推薦用戶感興趣的產品。
大數據就業方向:大數據系統研發,大數據應用開發,大數據分析等。
6. 大數據是學php嗎
1、電腦行業需求量大,工作很好找,而且工作環境也不錯。
2、電腦行業的工作與社會接觸都比較緊密,緊跟潮流,所以見識和思想都會比較開放,也有利於以後自己發展。
3、學習電腦入手比較快,學習難度不是很大。
7. php能做大數據分析嗎
數據挖掘現在用的比較多的是python。
數據分析這塊現在用的比較多的是scala。
php不適合做大數據分析
8. 大數據怎麼入行 做了兩年php研發,現在想轉做大數據,沒什麼經驗,想入行的話,hadoop和數據
大數據對於我們這些從業者來說,是不太喜歡說的一個詞。所謂內行看門道,外行看熱鬧,大數據這兩年風風火火,大家都爭先恐後的討論著,但說到如何掌握或者運用,很多人是不知所措的。
私以為,大數據的核心在三個地方:數學+計算機知識+業務
先說說題主說到的編程,我在這里將它納入計算機知識這一部分,因為編程對於我們來說只是大數據的冰山一角。這兩年大數據的發展,絕對不是因為編程語言的進步,很大一部分是由於計算機工具的進步或者硬體的提升。 尤其是現在計算機硬體價格的下跌,以及大數據處理工具的發展,如hadoop,spark等,帶來了數據處理能力的飛速提升,才導致了現在大數據的越來越火。
至於我們說的數據挖掘知識和編程語言,這些都是很早以前就已經存在的知識,這幾年也沒有得到很令人驚喜的新進展(我說的是知識本身,不是指應用)。
總之: 大數據之所以得到人們關注,最重要的是數據處理工具的進步以及數據量的累積(尤其是互聯網)
那麼是不是說明 掌握編程或者計算機工具就是邁入大數據的關鍵路徑呢?
答案:顯然不是,數學才是真正的核心知識。
沒錯,數學是在數據挖掘領域非常重要的甚至是核心的部分,編程只是工具,真的只是工具。 編程語言有好幾十種嗎,但是數據挖掘理論知識就那兒點。 你用任何一門語言去實現你的數學思想便可以達到數據挖掘的目標。 學術研究甚至可以拋棄編程,完全只研究演算法(注意:這樣的話會容易造成紙上談兵)。
9. PHP的演算法可以實現大數據分析嗎
1.Bloom filter
適用范圍:可以用來實現數據字典,進行數據的判重,或者集合求交集
基本原理及要點:
對於原理來說很簡單,位數組+k個獨立hash函數。將hash函數對應的值的位數組置1,查找時如果發現所有hash函數對應位都是1說明存在,很明顯這個過程並不保證查找的結果是100%正確的。同時也不支持刪除一個已經插入的關鍵字,因為該關鍵字對應的位會牽動到其他的關鍵字。所以一個簡單的改進就是 counting Bloom filter,用一個counter數組代替位數組,就可以支持刪除了。
還有一個比較重要的問題,如何根據輸入元素個數n,確定位數組m的大小及hash函數個數。當hash函數個數k=(ln2)*(m/n)時錯誤率最小。在錯誤率不大於E的情況下,m至少要等於n*lg(1/E)才能表示任意n個元素的集合。但m還應該更大些,因為還要保證bit數組里至少一半為 0,則m 應該>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2為底的對數)。
舉個例子我們假設錯誤率為0.01,則此時m應大概是n的13倍。這樣k大概是8個。
注意這里m與n的單位不同,m是bit為單位,而n則是以元素個數為單位(准確的說是不同元素的個數)。通常單個元素的長度都是有很多bit的。所以使用bloom filter內存上通常都是節省的。
擴展:
Bloom filter將集合中的元素映射到位數組中,用k(k為哈希函數個數)個映射位是否全1表示元素在不在這個集合中。Counting bloom filter(CBF)將位數組中的每一位擴展為一個counter,從而支持了元素的刪除操作。Spectral Bloom Filter(SBF)將其與集合元素的出現次數關聯。SBF採用counter中的最小值來近似表示元素的出現頻率。
問題實例:給你A,B兩個文件,各存放50億條URL,每條URL佔用64位元組,內存限制是4G,讓你找出A,B文件共同的URL。如果是三個乃至n個文件呢?
根據這個問題我們來計算下內存的佔用,4G=2^32大概是40億*8大概是340億,n=50億,如果按出錯率0.01算需要的大概是650億個 bit。現在可用的是340億,相差並不多,這樣可能會使出錯率上升些。另外如果這些urlip是一一對應的,就可以轉換成ip,則大大簡單了。
2.Hashing
適用范圍:快速查找,刪除的基本數據結構,通常需要總數據量可以放入內存
基本原理及要點:
hash函數選擇,針對字元串,整數,排列,具體相應的hash方法。
碰撞處理,一種是open hashing,也稱為拉鏈法;另一種就是closed hashing,也稱開地址法,opened addressing。 (http://www.my400800.cn)
擴展:
d-left hashing中的d是多個的意思,我們先簡化這個問題,看一看2-left hashing。2-left hashing指的是將一個哈希表分成長度相等的兩半,分別叫做T1和T2,給T1和T2分別配備一個哈希函數,h1和h2。在存儲一個新的key時,同時用兩個哈希函數進行計算,得出兩個地址h1[key]和h2[key]。這時需要檢查T1中的h1[key]位置和T2中的h2[key]位置,哪一個位置已經存儲的(有碰撞的)key比較多,然後將新key存儲在負載少的位置。如果兩邊一樣多,比如兩個位置都為空或者都存儲了一個key,就把新key 存儲在左邊的T1子表中,2-left也由此而來。在查找一個key時,必須進行兩次hash,同時查找兩個位置。
問題實例:
1).海量日誌數據,提取出某日訪問網路次數最多的那個IP。
IP的數目還是有限的,最多2^32個,所以可以考慮使用hash將ip直接存入內存,然後進行統計。
3.bit-map
適用范圍:可進行數據的快速查找,判重,刪除,一般來說數據范圍是int的10倍以下
基本原理及要點:使用bit數組來表示某些元素是否存在,比如8位電話號碼
擴展:bloom filter可以看做是對bit-map的擴展
問題實例:
1)已知某個文件內包含一些電話號碼,每個號碼為8位數字,統計不同號碼的個數。
8位最多99 999 999,大概需要99m個bit,大概10幾m位元組的內存即可。
2)2.5億個整數中找出不重復的整數的個數,內存空間不足以容納這2.5億個整數。
將bit-map擴展一下,用2bit表示一個數即可,0表示未出現,1表示出現一次,2表示出現2次及以上。或者我們不用2bit來進行表示,我們用兩個bit-map即可模擬實現這個2bit-map。
4.堆
適用范圍:海量數據前n大,並且n比較小,堆可以放入內存
基本原理及要點:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我們比較當前元素與最大堆里的最大元素,如果它小於最大元素,則應該替換那個最大元素。這樣最後得到的n個元素就是最小的n個。適合大數據量,求前n小,n的大小比較小的情況,這樣可以掃描一遍即可得到所有的前n元素,效率很高。
擴展:雙堆,一個最大堆與一個最小堆結合,可以用來維護中位數。
問題實例:
1)100w個數中找最大的前100個數。
用一個100個元素大小的最小堆即可。
5.雙層桶劃分 ----其實本質上就是【分而治之】的思想,重在「分」的技巧上!
適用范圍:第k大,中位數,不重復或重復的數字
基本原理及要點:因為元素范圍很大,不能利用直接定址表,所以通過多次劃分,逐步確定范圍,然後最後在一個可以接受的范圍內進行。可以通過多次縮小,雙層只是一個例子。
擴展:
問題實例:
1).2.5億個整數中找出不重復的整數的個數,內存空間不足以容納這2.5億個整數。
有點像鴿巢原理,整數個數為2^32,也就是,我們可以將這2^32個數,劃分為2^8個區域(比如用單個文件代表一個區域),然後將數據分離到不同的區域,然後不同的區域在利用bitmap就可以直接解決了。也就是說只要有足夠的磁碟空間,就可以很方便的解決。
2).5億個int找它們的中位數。
這個例子比上面那個更明顯。首先我們將int劃分為2^16個區域,然後讀取數據統計落到各個區域里的數的個數,之後我們根據統計結果就可以判斷中位數落到那個區域,同時知道這個區域中的第幾大數剛好是中位數。然後第二次掃描我們只統計落在這個區域中的那些數就可以了。
實際上,如果不是int是int64,我們可以經過3次這樣的劃分即可降低到可以接受的程度。即可以先將int64分成2^24個區域,然後確定區域的第幾大數,在將該區域分成2^20個子區域,然後確定是子區域的第幾大數,然後子區域里的數的個數只有2^20,就可以直接利用direct addr table進行統計了。
6.資料庫索引
適用范圍:大數據量的增刪改查
基本原理及要點:利用數據的設計實現方法,對海量數據的增刪改查進行處理。
擴展:
問題實例:
7.倒排索引(Inverted index)
適用范圍:搜索引擎,關鍵字查詢
基本原理及要點:為何叫倒排索引?一種索引方法,被用來存儲在全文搜索下某個單詞在一個文檔或者一組文檔中的存儲位置的映射。
以英文為例,下面是要被索引的文本:
T0 = "it is what it is"
T1 = "what is it"
T2 = "it is a banana"
我們就能得到下面的反向文件索引:
"a": {2}
"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}
檢索的條件"what", "is" 和 "it" 將對應集合的交集。
正向索引開發出來用來存儲每個文檔的單詞的列表。正向索引的查詢往往滿足每個文檔有序頻繁的全文查詢和每個單詞在校驗文檔中的驗證這樣的查詢。在正向索引中,文檔占據了中心的位置,每個文檔指向了一個它所包含的索引項的序列。也就是說文檔指向了它包含的那些單詞,而反向索引則是單詞指向了包含它的文檔,很容易看到這個反向的關系。
擴展:
問題實例:文檔檢索系統,查詢那些文件包含了某單詞,比如常見的學術論文的關鍵字搜索。
8.外排序
適用范圍:大數據的排序,去重
基本原理及要點:外排序的歸並方法,置換選擇 敗者樹原理,最優歸並樹
擴展:
問題實例:
1).有一個1G大小的一個文件,裡面每一行是一個詞,詞的大小不超過16個位元組,內存限制大小是1M。返回頻數最高的100個詞。
這個數據具有很明顯的特點,詞的大小為16個位元組,但是內存只有1m做hash有些不夠,所以可以用來排序。內存可以當輸入緩沖區使用。
9.trie樹
適用范圍:數據量大,重復多,但是數據種類小可以放入內存
基本原理及要點:實現方式,節點孩子的表示方式
擴展:壓縮實現。
問題實例:
1).有10個文件,每個文件1G, 每個文件的每一行都存放的是用戶的query,每個文件的query都可能重復。要你按照query的頻度排序 。
2).1000萬字元串,其中有些是相同的(重復),需要把重復的全部去掉,保留沒有重復的字元串。請問怎麼設計和實現?
3).尋找熱門查詢:查詢串的重復度比較高,雖然總數是1千萬,但如果除去重復後,不超過3百萬個,每個不超過255位元組。
10.分布式處理 maprece
適用范圍:數據量大,但是數據種類小可以放入內存
基本原理及要點:將數據交給不同的機器去處理,數據劃分,結果歸約。
擴展:
問題實例:
1).The canonical example application of MapRece is a process to count the appearances of
each different word in a set of documents:
void map(String name, String document):
// name: document name
// document: document contents
for each word w in document:
EmitIntermediate(w, 1);
void rece(String word, Iterator partialCounts):
// key: a word
// values: a list of aggregated partial counts
int result = 0;
for each v in partialCounts:
result += ParseInt(v);
Emit(result);
Here, each document is split in words, and each word is counted initially with a "1" value by
the Map function, using the word as the result key. The framework puts together all the pairs
with the same key and feeds them to the same call to Rece, thus this function just needs to
sum all of its input values to find the total appearances of that word.
2).海量數據分布在100台電腦中,想個辦法高效統計出這批數據的TOP10。
3).一共有N個機器,每個機器上有N個數。每個機器最多存O(N)個數並對它們操作。如何找到N^2個數的中數(median)?
經典問題分析
上千萬or億數據(有重復),統計其中出現次數最多的前N個數據,分兩種情況:可一次讀入內存,不可一次讀入。
可用思路:trie樹+堆,資料庫索引,劃分子集分別統計,hash,分布式計算,近似統計,外排序
所謂的是否能一次讀入內存,實際上應該指去除重復後的數據量。如果去重後數據可以放入內存,我們可以為數據建立字典,比如通過 map,hashmap,trie,然後直接進行統計即可。當然在更新每條數據的出現次數的時候,我們可以利用一個堆來維護出現次數最多的前N個數據,當然這樣導致維護次數增加,不如完全統計後在求前N大效率高。
如果數據無法放入內存。一方面我們可以考慮上面的字典方法能否被改進以適應這種情形,可以做的改變就是將字典存放到硬碟上,而不是內存,這可以參考資料庫的存儲方法。
當然還有更好的方法,就是可以採用分布式計算,基本上就是map-rece過程,首先可以根據數據值或者把數據hash(md5)後的值,將數據按照范圍劃分到不同的機子,最好可以讓數據劃分後可以一次讀入內存,這樣不同的機子負責處理各種的數值范圍,實際上就是map。得到結果後,各個機子只需拿出各自的出現次數最多的前N個數據,然後匯總,選出所有的數據中出現次數最多的前N個數據,這實際上就是rece過程。
實際上可能想直接將數據均分到不同的機子上進行處理,這樣是無法得到正確的解的。因為一個數據可能被均分到不同的機子上,而另一個則可能完全聚集到一個機子上,同時還可能存在具有相同數目的數據。比如我們要找出現次數最多的前100個,我們將1000萬的數據分布到10台機器上,找到每台出現次數最多的前 100個,歸並之後這樣不能保證找到真正的第100個,因為比如出現次數最多的第100個可能有1萬個,但是它被分到了10台機子,這樣在每台上只有1千個,假設這些機子排名在1000個之前的那些都是單獨分布在一台機子上的,比如有1001個,這樣本來具有1萬個的這個就會被淘汰,即使我們讓每台機子選出出現次數最多的1000個再歸並,仍然會出錯,因為可能存在大量個數為1001個的發生聚集。因此不能將數據隨便均分到不同機子上,而是要根據hash 後的值將它們映射到不同的機子上處理,讓不同的機器處理一個數值范圍。
而外排序的方法會消耗大量的IO,效率不會很高。而上面的分布式方法,也可以用於單機版本,也就是將總的數據根據值的范圍,劃分成多個不同的子文件,然後逐個處理。處理完畢之後再對這些單詞的及其出現頻率進行一個歸並。實際上就可以利用一個外排序的歸並過程。
另外還可以考慮近似計算,也就是我們可以通過結合自然語言屬性,只將那些真正實際中出現最多的那些詞作為一個字典,使得這個規模可以放入內存。
10. php 更新大數據時很慢
沒必要一次性查出100W條。每次請求3-5W數據update,分頁用遞歸。
控制好變數內存,不要內存溢出。