貝葉斯網路python
1. 大數據分析培訓哪個機構好
在眾多大數據分析培訓機構中,推薦上海尚學堂,下面介紹上海尚學堂大數據分析培訓機構中脫穎而出的優勢:
1、上海尚學堂2006年2月16日成立,14年風雨兼程,尚學堂早已桃李滿天下,數十萬參與培訓的學員如今已然奮戰在IT行業第一線。現旗下業務覆蓋:JAVA開發技術培訓、讓人人享有高品質教育高級架構師培訓、大數據雲計算培訓、人工智慧python培訓、Web前端培訓。現有校區遍布全國,上海、北京。
2、上海尚學堂在成都、 太原等擁有14個校區。公司以助力學員跨入IT領域,為IT人才提供就業服務為宗旨,打造高端復合型人才。師資實戰團隊高達240人,學員遍布全球海內外,受益千萬學員。至今就業合作企業數量已達1000+,讓人人享有高品質教育同時,為中國的IT人才全力護航。推出線上視頻,下載量累積破2.3億次。
5、並推出軟考、Adobe認證、PMP認證、紅帽RHCE認證課程,教學大綱緊跟企業需求,並推出軟考、Adobe認證、PMP認證、紅帽RHCE認證課程,讓人人享有高品質教育同時,為中國的IT人才全力護航。擁有全國一體化就業保障服務,成為學員信賴的IT職業教育品牌。擁有全國一體化就業保障服務,成為學員信賴的IT職業教育品牌。
2. 大數據、數據分析和數據挖掘的區別是什麼
大數據概念:大數據是近兩年提出來的,有三個重要的特徵:數據量大,結構復雜,數據更新速度很快。由於Web技術的發展,web用戶產生的數據自動保存、感測器也在不斷收集數據,以及移動互聯網的發展,數據自動收集、存儲的速度在加快,全世界的數據量在不斷膨脹,數據的存儲和計算超出了單個計算機(小型機和大型機)的能力,這給數據挖掘技術的實施提出了挑戰(一般而言,數據挖掘的實施基於一台小型機或大型機,也可以進行並行計算)。
數據挖掘概念: 數據挖掘基於資料庫理論,機器學習,人工智慧,現代統計學的迅速發展的交叉學科,在很多領域中都有應用。涉及到很多的演算法,源於機器學習的神經網路,決策樹,也有基於統計學習理論的支持向量機,分類回歸樹,和關聯分析的諸多演算法。數據挖掘的定義是從海量數據中找到有意義的模式或知識。
大數據需要映射為小的單元進行計算,再對所有的結果進行整合,就是所謂的map-rece演算法框架。在單個計算機上進行的計算仍然需要採用一些數據挖掘技術,區別是原先的一些數據挖掘技術不一定能方便地嵌入到 map-rece 框架中,有些演算法需要調整。
大數據和數據挖掘的相似處或者關聯在於: 數據挖掘的未來不再是針對少量或是樣本化,隨機化的精準數據,而是海量,混雜的大數據,數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支持過程。在實用中,數據分析可幫助人們作出判斷。
拓展資料:
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
3. 人工智慧學習本科學歷夠不
人工智慧學習本科學歷夠。如需學習人工智慧推薦選擇【達內教育】,該機構課程體系緊跟企業需求,企業級項目,課程穿插大廠真實項目講解,對標企業人才標准,制定專業學習計劃,囊括主流熱點技術。與多家企業簽訂人才培養協議,全面助力學員更好就業。
學習人工智慧需要掌握的知識具體如下:
1、掌握【Python基礎知識】。
2、了解Python,熟悉4種工具的基礎知識。
3、資料庫實戰開發。
4、數學基礎要求:高等數學、線性代數和概率論等。
5、至少需要掌握一門編程語言。
6、深入到硬體的話,一些電類基礎課必不可少。感興趣的話點擊此處,免費學習一下
想了解更多有關人工智慧的相關信息,推薦咨詢【達內教育】。秉承「名師出高徒、高徒拿高薪」的教學理念,是達內公司確保教學質量的重要環節。作為美國上市職業教育公司,誠信經營,拒絕虛假宣傳是該機構集團的經營理念。該機構在學員報名之前完全公開所有授課講師的授課安排及背景資料,並與學員簽訂《指定授課講師承諾書》,確保學員利益。達內IT培訓機構,試聽名額限時搶購。
4. 數據精準營銷的七個關鍵要素
數據精準營銷的七個關鍵要素
說到大數據精準營銷,不得不先提個性化的用戶畫像,我們針對每一類數據實體,進一步分解可落地的數據維度,刻畫TA的每一個特徵,在聚集起來形成人群畫像。
01用戶畫像
用戶畫像是根據用戶社會屬性、生活習慣和消費行為等信息而抽象出的一個標簽化的用戶模型。具體包含以下幾個維度:
用戶固定特徵:性別,年齡,地域,教育水平,生辰八字,職業,星座
用戶興趣特徵:興趣愛好,使用APP,網站,瀏覽/收藏/評論內容,品牌偏好,產品偏好
用戶社會特徵:生活習慣,婚戀,社交/信息渠道偏好,宗教信仰,家庭成分
用戶消費特徵:收入狀況,購買力水平,商品種類,購買渠道喜好,購買頻次
用戶動態特徵:當下時間,需求,正在前往的地方,周邊的商戶,周圍人群,新聞事件如何生成用戶精準畫像大致分成三步。
1.採集和清理數據:用已知預測未知
首先得掌握繁雜的數據源。包括用戶數據、各式活動數據、電子郵件訂閱數、線上或線下資料庫及客戶服務信息等。這個是累積資料庫;這裡面最基礎的就是如何收集網站/APP用戶行為數據。比如當你登陸某網站,其Cookie就一直駐留在瀏覽器中,當用戶觸及的動作,點擊的位置,按鈕,點贊,評論,粉絲,還有訪問的路徑,可以識別並記錄他/她的所有瀏覽行為,然後持續分析瀏覽過的關鍵詞和頁面,分析出他的短期需求和長期興趣。還可以通過分析朋友圈,獲得非常清晰獲得對方的工作,愛好,教育等方面,這比個人填寫的表單,還要更全面和真實。
我們用已知的數據尋找線索,不斷挖掘素材,不但可以鞏固老會員,也可以分析出未知的顧客與需求,進一步開發市場。
2.用戶分群:分門別類貼標簽
描述分析是最基本的分析統計方法,描述統計分為兩大部分:數據描述和指標統計。數據描述:用來對數據進行基本情況的刻畫,包括數據總數,范圍,數據來源。指標統計:把分布,對比,預測指標進行建模。這里常常是Data mining的一些數學模型,像響應率分析模型,客戶傾向性模型,這類分群使用Lift圖,用打分的方法告訴你哪一類客戶有較高的接觸和轉化的價值。
在分析階段,數據會轉換為影響指數,進而可以做"一對一"的精準營銷。舉個例子,一個80後客戶喜歡在生鮮網站上早上10點下單買菜,晚上6點回家做飯,周末喜歡去附近吃日本料理,經過搜集與轉換,就會產生一些標簽,包括"80後""生鮮""做飯""日本料理"等等,貼在消費者身上。
3.制定策略:優化再調整
有了用戶畫像之後,便能清楚了解需求,在實際操作上,能深度經營顧客關系,甚至找到擴散口碑的機會。例如上面例子中,若有生鮮的打折券,日本餐館最新推薦,營銷人員就會把適合產品的相關信息,精準推送這個消費者的手機中;針對不同產品發送推薦信息,同時也不斷通過滿意度調查,跟蹤碼確認等方式,掌握顧客各方面的行為與偏好。
除了顧客分群之外,營銷人員也在不同時間階段觀察成長率和成功率,前後期對照,確認整體經營策略與方向是否正確;若效果不佳,又該用什麼策略應對。反復試錯並調整模型,做到循環優化。
這個階段的目的是提煉價值,再根據客戶需求精準營銷,最後追蹤客戶反饋的信息,完成閉環優化。
我們從數據整合導入開始,聚合數據,在進行數據的分析挖掘。數據分析和挖掘還是有一些區別。數據分析重點是觀察數據,單純的統計,看KPI的升降原因。而數據挖掘從細微和模型角度去研究數據,從學習集、訓練集發現知識規則,除了一些比較商業化的軟體SAS,WEKA功能強大的數據分析挖掘軟體,這邊還是更推薦使用R,Python,因為SAS,SPSS本身比較昂貴,也很難做頁面和服務級別的API,而Python和R有豐富的庫,可以類似WEKA的模塊,無縫交互其他API和程序,這里還需要熟悉資料庫,Hadoop等。
02數據細分受眾
「顛覆營銷」書中提到一個例子,可以引述一下,大家思考一個問題:如果你打算搜集200份有效問卷,依照以往的經驗,你需要發多少份問卷,才能達到這個目標?預計用多少預算和時間來執行?
以往的方法是這樣的:評估網路問卷大約是5%的回收率,想要保證收到200份的問卷,就必須有20倍的發送量,也就是發出4000份問卷,一個月內如果可以回收,就是不錯的表現。
但現在不一樣了,在執行大數據分析的3小時內,就可以輕松完成以下的目標:
精準挑選出1%的VIP顧客
發送390份問卷,全部回收
問卷寄出3小時內回收35%的問卷
5天內就回收了超過目標數86%的問卷數
所需時間和預算都在以往的10%以下
這是怎麼做到在問卷發送後的3個小時就回收35%?那是因為數據做到了發送時間的"一對一定製化",利用數據得出,A先生最可能在什麼時間打開郵件就在那個時間點發送問卷。
舉例來說,有的人在上班路上會打開郵件,但如果是開車族,並沒有時間填寫答案,而搭乘公共交通工具的人,上班路上的時間會玩手機,填寫答案的概率就高,這些都是數據細分受眾的好處。
03預 測
「預測」能夠讓你專注於一小群客戶,而這群客戶卻能代表特定產品的大多數潛在買家。
當我們採集和分析用戶畫像時,可以實現精準營銷。這是最直接和最有價值的應用,廣告主可以通過用戶標簽來發布廣告給所要觸達的用戶,這裡面又可以通過上圖提到的搜索廣告,展示社交廣告,移動廣告等多渠道的營銷策略,營銷分析,營銷優化以及後端CRM/供應鏈系統打通的一站式營銷優化,全面提升ROI。
我們再說一說營銷時代的變遷,傳統的企業大多還停留在「營銷1.0」時代,以產品為中心,滿足傳統的消費者需求,而進入「營銷2.0」,以社會價值與品牌為使命,也不能完全精準對接個性化需求。進入營銷3.0的數據時代,我們要對每個消費者進行個性化匹配,一對一營銷,甚至精確算清楚成交轉化率,提高投資回報比。
大數據下的營銷顛覆經典的營銷4P理論,Proct,Price,Place,Promotion,取而代之的是新的4P,People,Performance,Process,Prediction。在大數據時代,線下地理的競爭邊界早就不存在,比的是早一步的先知能力,利用大數據,從顧客真實交易數據中,預測下一次的購買時間。 營銷3.0時代關鍵詞就是「預測」。
預測營銷能夠讓你專注於一小群客戶,而這群客戶卻能代表特定產品的大多數潛在買家。以上圖為例,你可以將營銷活動的目標受眾鎖定為20萬潛在客戶或現有客戶,其中包括特定產品的大多數買家(4萬人)。你還可以撥出部分預算用於吸引更小的客戶群(比如20% 的客戶),而不是整個客戶群,進而優化你的支出。
過去我們看數據可能是被動的方式,但預測營銷強調是決策價值,比如購買時間,你該看的不是她最後的購買日期,而是下次購買的時間,看未來的存活概率,最後生成客戶終身價值(CLV)。預測營銷催生了一種新的數據驅動營銷方式,就是以客戶為中心,核心在於幫助公司完成從以產品或渠道為中心到以客戶為中心的轉變。
04精準推薦
大數據最大的價值不是事後分析,而是預測和推薦,我就拿電商舉例,"精準推薦"成為大數據改變零售業的核心功能。譬如服裝網站Stitch fix例子,在個性化推薦機制方面,大多數服裝訂購網站採用的都是用戶提交身形、風格數據+編輯人工推薦的模式,Stitch Fix不一樣的地方在於它還結合了機器演算法推薦。這些顧客提供的身材比例,主觀數據,加上銷售記錄的交叉核對,挖掘每個人專屬的服裝推薦模型。 這種一對一營銷是最好的服務。
數據整合改變了企業的營銷方式,現在經驗已經不是累積在人的身上,而是完全依賴消費者的行為數據去做推薦。未來,銷售人員不再只是銷售人員,而能以專業的數據預測,搭配人性的親切互動推薦商品,升級成為顧問型銷售。
05技術工具
關於預測營銷的技術能力,有幾種選擇方案:
1、使用預測分析工作平台,然後以某種方法將模型輸入活動管理工具;
2、以分析為動力的預測性活動外包給市場服務提供商;
3、評估並購買一個預測營銷的解決方案,比如預測性營銷雲和多渠道的活動管理工具。
但無論哪條路,都要確定三項基本能力:
1)連接不同來源的客戶數據,包括線上,線下,為預測分析准備好數據 ;
2)分析客戶數據,使用系統和定製預測模型,做高級分析 ;
3)在正確時間,正確客戶,正確的場景出發正確行為,可能做交叉銷售,跨不同營銷系統。
06預測模型
預測客戶購買可能性的行業標準是RFM模型(最近一次消費R,消費頻率F,消費金額M),但模型應用有限,本質是一個試探性方案,沒有統計和預測依據。「過去的成績不能保證未來的表現」,RFM只關注過去,不去將客戶當前行為和其他客戶當前行為做對比。這樣就無法在購買產品之前識別高價值客戶。
我們聚焦的預測模型,就是為了在最短時間內對客戶價值產生最大影響。這里列舉一些其他模型參考:
參與傾向模型,預測客戶參與一個品牌的可能性,參與定義可以多元,比如參加一個活動,打開電子郵件,點擊,訪問某頁面。可以通過模型來確定EDM的發送頻率。並對趨勢做預測,是增加還是減少活動。
錢包模型,就是為每個客戶預測最大可能的支出,定義為單個客戶購買產品的最大年度支出。然後看增長模型,如果當前的總目標市場比較小,但未來可能很大,就需要去發現這些市場。
價格優化模型,就是能夠去最大限度提升銷售,銷量或利潤的架構,通過價格優化模型為每個客戶來定價,這里需要對你想要的產品開發不同的模型,或者開發通用,可預測的客戶價格敏感度的模型,確定哪一塊報價時對客戶有最大的影響。
關鍵字推薦模型,關鍵字推薦模型可以基於一個客戶網路行為和購買記錄來預測對某個內容的喜愛程度,預測客戶對什麼熱點,爆款感興趣,營銷者使用這種預測結果為特定客戶決定內容營銷主題。
預測聚集模型,預測聚集模型就是預測客戶會歸為哪一類。
07AI在營銷領域的應用
去年人工智慧特別火,特別是深度學習在機器視覺,語言識別,游戲AI上的突飛猛進,以至於人們開始恐慌人工智慧是不是已經可以接管人類工作,我個人是對新技術有著強烈的興趣,也非常看好新科技,數據與現實的關聯。
我以前在國外零售店買單的時候經常被詢問「你有沒有購物卡」,當我說沒有收銀員會趕緊勸我免費開通,有打折優惠,只需要填個手機號和郵箱,後面就可以針對我的購買記錄做營銷活動,而當我下次進來,他們就讓我報出電話號碼做消費者識別,當時我想如果做到人臉識別,豈不是更方便,刷臉就可以買單。而這個場景在去年也有了實驗,螞蟻金服研發出了一個生物識別機器人,叫螞可Mark,據說其認臉能力已經超越了人類肉眼的能力。還有VR購物,Amazon推出的無收銀員商店Amazon Go,通過手勢識別,物聯網和後續數據挖掘等技術實現購物體驗。
針對營銷領域,主要有以下三種預測營銷技術:
1、無監督的學習技術
無監督學習技術能識別數據中的隱藏模式,也無須明確預測一種結果。比如在一群客戶中發現興趣小組,也許是滑雪,也許是長跑,一般是放在聚類演算法,揭示數據集合中 真實的潛在客戶。所謂聚類,就是自動發現重要的客戶屬性,並據此做分類。
2、 有監督的學習技術
通過案例訓練機器,學習並識別數據,得到目標結果,這個一般是給定輸入數據情況下預測,比如預測客戶生命周期價值,客戶與品牌互動的可能性,未來購買的可能性。
3、強化學習技術
這種是利用數據中的潛質模式,精準預測最佳的選擇結果,比如對某用戶做促銷應該提供哪些產品。這個跟監督學習不同,強化學習演算法無須僅需輸入和輸出訓練,學習過程通過試錯完成。
從技術角度看,推薦模型應用了協同過濾,貝葉斯網路等演算法模型。強化學習是被Google Brain團隊的負責人Jeff Dean認為是最有前途的AI研究方向之一。最近Google的一個AI團隊DeepMind發表了一篇名為《學會強化學習》的論文。
按團隊的話來說,叫做「學會學習」的能力,或者叫做能解決類似相關問題的歸納能力。除了強化學習,還在遷移學習。遷移學習就是把一個通用模型遷移到一個小數據上,使它個性化,在新的領域也能產生效果,類似於人的舉一反三、觸類旁通。
強化學習加上遷移學習,能夠把小數據也用起來,我認為是很激動人心的,通過AI來創造AI,數據科學家的部分工作也可以讓機器來實現了。
5. Python 與深度學習有哪些與建築設計相接軌的可能性
關注這個問題快一周了,到目前來說還是沒發現什麼太大的驚喜。我感覺建築設計界還是要學習一個,不要看到深度學習很火,就弄個大新聞,把這玩意往建築設計上搬呀。
其實深度學習這事兒到底怎麼就能和建築設計掛鉤上?如果單單指「深度學習」,那我的理解是套用了許多層的人工神經網路,這種技術能在建築設計中扮演什麼角色?我目前還真沒發現直接用深度學習這種技術來輔助建築設計的例子。但是如果把題主提問的概念放寬松一點,變成「如何使用機器學習等演算法來幫助建築設計」,那我想還是有比較好的例子的。
機器學習技術是用來讓程序的運行性能隨著輸入量和時間的積累慢慢提高的一種技術。例如你寫了一個程序來預測一棟別墅的房價,這個程序的作用是能根據輸入數據的[城市,街道,區位,面積,戶型,..]等參數預測房價,為了提高程序預測的准確度,你需要先給程序喂一些已經有了估價結果的數據,程序學習一定的數據以後就能自己預測房價了。那麼,這種程序工作的方式和我們做建築設計的工作流程有什麼聯系呢? 我們做設計時,同樣也是先調研和參考大量同類建築的案例,積累到一定量以後,才能自己動手開始做設計。了解了這一點,便可以設想一種利用機器學習來輔助建築設計的思路:先讓程序學習以前的建築設計方案,然後程序就能自己去做設計了!
這篇2010年的論文 Computer-generated residential building layouts 可以說就是以上思路的典範。作者自稱「使用數據驅動的方式設計了能自動創建視覺效果非常好的建築布局的工具」,但我覺得論文的質量是遠遠超過了這樣謙遜的描述,因為論文實現的思路極大程度借鑒了現實中建築師開展設計工作的流程,而且用了貝葉斯網路這個非常漂亮的數學模型描述了一個建築program在空間中的分布,而貝葉斯網路的訓練數據全部來自真實的建築師的設計方案。個人認為用機器學習的思路去處理建築布局問題相比於過去十年來Shape Grammar的那種Proceral Modeling的思路來得更為正確。
論文是怎麼展開的呢?首先,作者總結了前人工作,說明了以前基於窮舉的演算法都行不通,要在3D空間中去窮舉這么復雜的空間分配問題就和猴子隨意敲鍵盤得到一部莎士比亞作品的難度差不多。接著作者又批判了上個世紀90年代Muller搞的Shape Grammar那一套也不行,因為Shape Grammar就是圖形語法,我們知道,編程語言是是基於有限規則的語法集生成的,而建築設計中這樣的規則條款很難形式化描述,而且會傾向於讓語法數量變得無窮多。順帶一提,幾十年前計算機科學家在攻克語音識別和機器翻譯難題的時候,也是認為自然語言是完全基於有限的規則生成的,但後來才發現行不通,直到後來改成基於統計的方法進行研究後,才有了突破性進展。 那麼shape grammar不適合建築設計的另外一點在於,建築設計不是玩弄圖形變換的游戲,每一個建築空間都有基於功能,心理和效用等因素的考慮。之前也有過用shape grammar分析賴特壁爐式住宅的語法規則的論文,但是應用范圍實在太窄。所以這條路是走不通的。
論文作者認為,做方案,一定要基於人的舒適和心理需求,習慣和社會關系等因素,將他們綜合考量後才會有比較合理的結果。例如,房間的形狀最好是凸包而不要做成凹的,因為在採光上,傢具擺放和視線上方正規整的形體都更優;建築各個功能要形成開放性 - 私密性的梯度,因為這正反映了建築被使用的方式。 為了研究更好的方法,作者去找到了一家建築事務所的建築師們向他們咨詢職業建築師的工作方式,得到了一個特別有用的結論:建築師在初期和客戶咨詢後,在畫平面的詳圖之前,一般都會用泡泡圖來思考問題,而泡泡圖則反映了一個建築方案高度濃縮的信息,包括私密性,房間鄰接關系,採光,業主喜好和文化習俗。
作者最後提到,准備把這個東西運用到更多的建築類型上,例如辦公樓等。如果這玩意兒成熟,再也不用擔心建築師不失業了,偶也!
最後我再說說對這玩意的評價吧。最近幾十年知識工作的自動化簡直如火如荼地吹遍天南地北的各個行業,許多人都擔心低端的勞動職位會不會被取代,例如駕駛汽車,快遞,寫新聞稿,翻譯,速記等等等,這種擔心真的不是毫無理由啊!當優雅簡潔的數學模型遇到計算機這個可以暴力計算的機器,結合起來就創造了一類又一類可成規模復制的智能機器,想想還是讓人後怕的。不過也不用太擔心就是,建築設計行業人所佔的因素還是很大的,很多時候甲方找人做設計,都是看重設計師本身,出了專業能力外,溝通,人格魅力,背景,執照等的背書也是很重要的,不過未來這種建築界持續了很久的行業模式會不會被顛覆就不得而知了。另外,程序也需要吃許多訓練數據才能提高自己的設計修養,在目前來看建築設計的各位同行都把自己搜集的方案當成寶一樣藏著,數據量的大而全也很難保證,不知道以後BIM的普及會不會讓這方面得到改善。
6. 有了處理excel數據的R語言代碼如何應用
數據科學和機器學習是該時代最需求的技術,這一需求促使每個人都學習不同的庫和軟體包以實現它們。這篇博客文章將重點介紹用於數據科學和機器學習的Python庫。這些是您掌握市場上最被炒作的兩項技能的庫。
以下是此博客中將涉及的主題列表:
數據科學與機器學習導論為什麼要使用Python進行數據科學和機器學習?用於數據科學和機器學習的Python庫用於統計的Python庫用於可視化的Python庫用於機器學習的Python庫深度學習的Python庫用於自然語言處理的Python庫數據科學與機器學習導論
當我開始研究數據科學和機器學習時,總是有這個問題困擾我最大。是什麼導致圍繞這兩個話題的熱門話題?
嗡嗡聲與我們生成的數據量有很大關系。數據是驅動ML模型所需的燃料,並且由於我們處在大數據時代,因此很清楚為什麼將數據科學視為該時代最有希望的工作角色!
我會說數據科學和機器學習是技能,而不僅僅是技術。它們是從數據中獲得有用的見解並通過建立預測模型解決問題所需的技能。
從形式上來講,這就是兩者的定義方式。
數據科學是從數據中提取有用信息以解決實際問題的過程。
機器學習是使機器學習如何通過提供大量數據來解決問題的過程。
這兩個域是高度互連的。
機器學習是數據科學的一部分,它利用ML演算法和其他統計技術來了解數據如何影響和發展業務。
為什麼要使用Python?
Python在用於實現機器學習和數據科學的最流行的編程語言中排名第一。讓我們了解為什麼。
易於學習:Python使用非常簡單的語法,可用於實現簡單的計算,例如將兩個字元串添加到復雜的過程中,例如構建復雜的ML模型。更少的代碼:實施數據科學和機器學習涉及無數的演算法。得益於Python對預定義包的支持,我們不必編寫演算法。為了使事情變得更容易,Python提供了一種「在編碼時檢查」的方法,從而減輕了測試代碼的負擔。預建庫:Python有100多個預建庫,用於實現各種ML和深度學習演算法。因此,每次您要在數據集上運行演算法時,只需要做的就是用單個命令安裝和載入必要的程序包。預先構建的庫的示例包括NumPy,Keras,Tensorflow,Pytorch等。與平台無關:Python可以在多個平台上運行,包括Windows,macOS,Linux,Unix等。在將代碼從一個平台轉移到另一個平台時,您可以使用諸如PyInstaller之類的軟體包,該軟體包將解決所有依賴性問題。大量的社區支持:除擁有大量支持者外,Python還擁有多個社區,團體和論壇,程序員可以在其中發布他們的錯誤並互相幫助。Python庫
Python在AI和ML領域普及的唯一最重要的原因是,Python提供了數千個內置庫,這些庫具有內置功能和方法,可以輕松地進行數據分析,處理,處理,建模等。 。在下一節中,我們將討論以下任務的庫:
統計分析數據可視化數據建模與機器學習深度學習自然語言處理(NLP)統計分析
統計是數據科學和機器學習的最基本基礎之一。所有ML和DL演算法,技術等均基於統計的基本原理和概念。
Python附帶了大量的庫,僅用於統計分析。在此博客中,我們將重點介紹提供內置函數以執行最復雜的統計計算的頂級統計軟體包。
這是用於統計分析的頂級Python庫的列表:
NumPySciPyPandas統計模型NumPy
NumPy或數值Python是最常用的Python庫之一。該庫的主要功能是它支持用於數學和邏輯運算的多維數組。NumPy提供的功能可用於索引,分類,整形和傳輸圖像和聲波,這些圖像和聲波是多維實數數組。
以下是NumPy的功能列表:
執行簡單到復雜的數學和科學計算對多維數組對象的強大支持以及用於處理數組元素的函數和方法的集合傅里葉變換和數據處理常式執行線性代數計算,這對於機器學習演算法(例如線性回歸,邏輯回歸,樸素貝葉斯等)是必需的。SciPy
SciPy庫建立在NumPy之上,是一組子軟體包的集合,可幫助解決與統計分析有關的最基本問題。SciPy庫用於處理使用NumPy庫定義的數組元素,因此它通常用於計算使用NumPy無法完成的數學方程式。
這是SciPy的功能列表:
它與NumPy數組一起使用,提供了一個平台,提供了許多數學方法,例如數值積分和優化。它具有可用於矢量量化,傅立葉變換,積分,插值等子包的集合。提供完整的線性代數函數堆棧,這些函數可用於更高級的計算,例如使用k-means演算法的聚類等。提供對信號處理,數據結構和數值演算法,創建稀疏矩陣等的支持。Pandas
Pandas是另一個重要的統計庫,主要用於統計,金融,經濟學,數據分析等廣泛領域。該庫依賴於NumPy數組來處理Pandas數據對象。NumPy,Pandas和SciPy在執行科學計算,數據處理等方面都嚴重依賴彼此。
我經常被要求在Pandas,NumPy和SciPy中選擇最好的,但是,我更喜歡使用它們,因為它們彼此之間非常依賴。Pandas是處理大量數據的最佳庫之一,而NumPy對多維數組具有出色的支持,另一方面,Scipy提供了一組執行大多數統計分析任務的子包。
以下是Pandas的功能列表:
使用預定義和自定義索引創建快速有效的DataFrame對象。它可用於處理大型數據集並執行子集,數據切片,索引等。提供用於創建Excel圖表和執行復雜數據分析任務的內置功能,例如描述性統計分析,數據整理,轉換,操作,可視化等。提供對處理時間序列數據的支持統計模型
StatsModels Python軟體包建立在NumPy和SciPy之上,是創建統計模型,數據處理和模型評估的最佳選擇。除了使用SciPy庫中的NumPy數組和科學模型外,它還與Pandas集成以進行有效的數據處理。該庫以統計計算,統計測試和數據探索而聞名。
以下是StatsModels的功能列表:
NumPy和SciPy庫中找不到的執行統計檢驗和假設檢驗的最佳庫。提供R樣式公式的實現,以實現更好的統計分析。它更隸屬於統計人員經常使用的R語言。由於它廣泛支持統計計算,因此通常用於實現廣義線性模型(GLM)和普通最小二乘線性回歸(OLM)模型。包括假設檢驗(零理論)在內的統計檢驗是使用StatsModels庫完成的。因此,它們是用於統計分析的最常用和最有效的Python庫。現在讓我們進入數據科學和機器學習中的數據可視化部分。
數據可視化
圖片說出一千多個單詞。我們都聽說過關於藝術方面的引用,但是,對於數據科學和機器學習也是如此。
數據可視化就是通過圖形表示有效地表達來自數據的關鍵見解。它包括圖形,圖表,思維導圖,熱圖,直方圖,密度圖等的實現,以研究各種數據變數之間的相關性。
在本博客中,我們將重點介紹最好的Python數據可視化軟體包,這些軟體包提供內置函數來研究各種數據功能之間的依賴關系。
這是用於數據可視化的頂級Python庫的列表:
Matplotlib是Python中最基本的數據可視化軟體包。它支持各種圖形,例如直方圖,條形圖,功率譜,誤差圖等。它是一個二維圖形庫,可生成清晰明了的圖形,這對於探索性數據分析(EDA)至關重要。
這是Matplotlib的功能列表:
Matplotlib通過提供選擇合適的線條樣式,字體樣式,格式化軸等功能,使繪制圖形變得極為容易。創建的圖形可幫助您清楚地了解趨勢,模式並進行關聯。它們通常是推理定量信息的工具。它包含Pyplot模塊,該模塊提供了與MATLAB用戶界面非常相似的界面。這是Matplotlib軟體包的最佳功能之一。提供面向對象的API模塊,以使用GUI工具(例如Tkinter,wxPython,Qt等)將圖形集成到應用程序中。Matplotlib
Matplotlib庫構成了Seaborn庫的基礎。與Matplotlib相比,Seaborn可用於創建更具吸引力和描述性的統計圖。除了對數據可視化的廣泛支持外,Seaborn還附帶一個面向數據集的內置API,用於研究多個變數之間的關系。
以下是Seaborn的功能列表:
提供用於分析和可視化單變數和雙變數數據點以及將數據與其他數據子集進行比較的選項。支持針對各種目標變數的線性回歸模型的自動統計估計和圖形表示。通過提供執行高級抽象的功能,構建用於構造多圖網格的復雜可視化。帶有許多內置主題,可用於樣式設置和創建matplotlib圖Ploty
Ploty是最知名的圖形Python庫之一。它提供了互動式圖形,以了解目標變數和預測變數之間的依賴性。它可以用於分析和可視化統計,財務,商業和科學數據,以生成清晰明了的圖形,子圖,熱圖,3D圖表等。
這是使Ploty成為最佳可視化庫之一的功能列表:
它具有30多種圖表類型,包括3D圖表,科學和統計圖,SVG地圖等,以實現清晰的可視化。藉助Ploty的Python API,您可以創建由圖表,圖形,文本和Web圖像組成的公共/私有儀錶板。使用Ploty創建的可視化以JSON格式序列化,因此您可以在R,MATLAB,Julia等不同平台上輕松訪問它們。它帶有一個稱為Plotly Grid的內置API,該API可讓您直接將數據導入Ploty環境。Bokeh
Bokeh是Python中交互性最強的庫之一,可用於為Web瀏覽器構建描述性的圖形表示形式。它可以輕松處理龐大的數據集並構建通用圖,從而有助於執行廣泛的EDA。Bokeh提供定義最完善的功能,以構建互動式繪圖,儀錶板和數據應用程序。
這是Bokeh的功能列表:
使用簡單的命令幫助您快速創建復雜的統計圖支持HTML,筆記本和伺服器形式的輸出。它還支持多種語言綁定,包括R,Python,lua,Julia等。Flask和django也與Bokeh集成在一起,因此您也可以在這些應用程序上表達可視化效果它提供了對轉換為其他庫(如matplotlib,seaborn,ggplot等)中編寫的可視化文件的支持因此,這些是用於數據可視化的最有用的Python庫。現在,讓我們討論用於實現整個機器學習過程的頂級Python庫。
機器學習
創建可以准確預測結果或解決特定問題的機器學習模型是任何數據科學項目中最重要的部分。
實施ML,DL等涉及對數千行代碼進行編碼,當您要創建通過神經網路解決復雜問題的模型時,這可能變得更加麻煩。但值得慶幸的是,我們無需編寫任何演算法,因為Python隨附了多個軟體包,僅用於實現機器學習技術和演算法。
在此博客中,我們將重點介紹提供內置函數以實現所有ML演算法的頂級ML軟體包。
以下是用於機器學習的頂級Python庫的列表:
Scikit-learnXGBoostElI5Scikit-learn
Scikit-learn是最有用的Python庫之一,是用於數據建模和模型評估的最佳庫。它附帶了無數功能,其唯一目的是創建模型。它包含所有有監督的和無監督的機器學習演算法,並且還具有用於集合學習和促進機器學習的定義明確的功能。
以下是Scikit學習的功能列表:
提供一組標准數據集,以幫助您開始使用機器學習。例如,著名的Iris數據集和Boston House Price數據集是Scikit-learn庫的一部分。用於執行有監督和無監督機器學習的內置方法。這包括解決,聚類,分類,回歸和異常檢測問題。帶有用於特徵提取和特徵選擇的內置功能,可幫助識別數據中的重要屬性。它提供了執行交叉驗證以評估模型性能的方法,還提供了用於優化模型性能的參數調整功能。XGBoost
XGBoost代表「極端梯度增強」,它是執行Boosting Machine Learning的最佳Python軟體包之一。諸如LightGBM和CatBoost之類的庫也同樣配備了定義明確的功能和方法。建立該庫的主要目的是實現梯度提升機,該梯度提升機用於提高機器學習模型的性能和准確性。
以下是其一些主要功能:
該庫最初是用C ++編寫的,被認為是提高機器學習模型性能的最快,有效的庫之一。核心的XGBoost演算法是可並行化的,並且可以有效地利用多核計算機的功能。這也使該庫足夠強大,可以處理大量數據集並跨數據集網路工作。提供用於執行交叉驗證,參數調整,正則化,處理缺失值的內部參數,還提供scikit-learn兼容的API。該庫經常在頂級的數據科學和機器學習競賽中使用,因為它一直被證明優於其他演算法。ElI5
ELI5是另一個Python庫,主要致力於改善機器學習模型的性能。該庫相對較新,通常與XGBoost,LightGBM,CatBoost等一起使用,以提高機器學習模型的准確性。
以下是其一些主要功能:
提供與Scikit-learn軟體包的集成,以表達功能重要性並解釋決策樹和基於樹的集成的預測。它分析並解釋了XGBClassifier,XGBRegressor,LGBMClassifier,LGBMRegressor,CatBoostClassifier,CatBoostRegressor和catboost所做的預測。它提供了對實現多種演算法的支持,以便檢查黑盒模型,其中包括TextExplainer模塊,該模塊可讓您解釋由文本分類器做出的預測。它有助於分析包括線性回歸器和分類器在內的scikit學習通用線性模型(GLM)的權重和預測。深度學習
機器學習和人工智慧的最大進步是通過深度學習。隨著深度學習的介紹,現在可以構建復雜的模型並處理龐大的數據集。幸運的是,Python提供了最好的深度學習軟體包,可幫助構建有效的神經網路。
在此博客中,我們將專注於提供用於實現復雜的神經網路的內置功能的頂級深度學習軟體包。
以下是用於深度學習的頂級Python庫的列表:
TensorFlow是用於深度學習的最佳Python庫之一,是一個用於跨各種任務進行數據流編程的開源庫。它是一個符號數學庫,用於構建強大而精確的神經網路。它提供了直觀的多平台編程界面,可在廣闊的領域中實現高度擴展。
以下是TensorFlow的一些關鍵功能:
它允許您構建和訓練多個神經網路,以幫助適應大型項目和數據集。除支持神經網路外,它還提供執行統計分析的功能和方法。例如,它帶有用於創建概率模型和貝葉斯網路(例如伯努利,Chi2,Uniform,Gamma等)的內置功能。該庫提供了分層的組件,這些組件可以對權重和偏差執行分層的操作,並且還可以通過實施正則化技術(例如批標准化,丟包等)來提高模型的性能。它帶有一個稱為TensorBoard的可視化程序,該可視化程序創建互動式圖形和可視化圖形以了解數據功能的依賴性。Pytorch
Pytorch是一個基於Python的開源科學計算軟體包,用於在大型數據集上實施深度學習技術和神經網路。Facebook積極地使用此庫來開發神經網路,以幫助完成各種任務,例如面部識別和自動標記。
以下是Pytorch的一些主要功能:
提供易於使用的API與其他數據科學和機器學習框架集成。與NumPy一樣,Pytorch提供了稱為Tensors的多維數組,與NumPy不同,它甚至可以在GPU上使用。它不僅可以用於對大型神經網路進行建模,而且還提供了一個界面,具有200多種用於統計分析的數學運算。創建動態計算圖,以在代碼執行的每個點建立動態圖。這些圖有助於時間序列分析,同時實時預測銷售量。Keras
Keras被認為是Python中最好的深度學習庫之一。它為構建,分析,評估和改進神經網路提供全面支持。Keras基於Theano和TensorFlow Python庫構建,該庫提供了用於構建復雜的大規模深度學習模型的附加功能。
以下是Keras的一些關鍵功能:
為構建所有類型的神經網路提供支持,即完全連接,卷積,池化,循環,嵌入等。對於大型數據集和問題,可以將這些模型進一步組合以創建完整的神經網路它具有執行神經網路計算的內置功能,例如定義層,目標,激活功能,優化器和大量工具,使處理圖像和文本數據更加容易。它帶有一些預處理的數據集和經過訓練的模型,包括MNIST,VGG,Inception,SqueezeNet,ResNet等。它易於擴展,並支持添加包括功能和方法的新模塊。自然語言處理
您是否曾經想過Google如何恰當地預測您要搜索的內容?Alexa,Siri和其他聊天機器人背後的技術是自然語言處理。NLP在設計基於AI的系統中發揮了巨大作用,該系統有助於描述人類語言與計算機之間的交互。
在此博客中,我們將重點介紹提供內置功能以實現基於高級AI的系統的頂級自然語言處理包。
這是用於自然語言處理的頂級Python庫的列表:
NLTKspaCyGensimNLTK(自然語言工具包)
NLTK被認為是分析人類語言和行為的最佳Python軟體包。NLTK庫是大多數數據科學家的首選,它提供易於使用的界面,其中包含50多種語料庫和詞彙資源,有助於描述人與人之間的互動以及構建基於AI的系統(例如推薦引擎)。
這是NLTK庫的一些關鍵功能:
提供一套數據和文本處理方法,用於文本分析的分類,標記化,詞干,標記,解析和語義推理。包含用於工業級NLP庫的包裝器,以構建復雜的系統,以幫助進行文本分類並查找人類語音的行為趨勢和模式它帶有描述計算語言學實現的綜合指南和完整的API文檔指南,可幫助所有新手開始使用NLP。它擁有龐大的用戶和專業人員社區,它們提供全面的教程和快速指南,以學習如何使用Python進行計算語言學。spaCy
spaCy是一個免費的開源Python庫,用於實現高級自然語言處理(NLP)技術。當您處理大量文本時,重要的是要了解文本的形態學意義以及如何將其分類以理解人類語言。通過spaCY可以輕松實現這些任務。
這是spaCY庫的一些關鍵功能:
除了語言計算外,spaCy還提供了單獨的模塊來構建,訓練和測試統計模型,從而更好地幫助您理解單詞的含義。帶有各種內置的語言注釋,可幫助您分析句子的語法結構。這不僅有助於理解測試,還有助於查找句子中不同單詞之間的關系。它可用於對包含縮寫和多個標點符號的復雜嵌套令牌應用令牌化。除了非常強大和快速之外,spaCy還提供對51種以上語言的支持。Gensim
Gensim是另一個開源Python軟體包,其建模旨在從大型文檔和文本中提取語義主題,以通過統計模型和語言計算來處理,分析和預測人類行為。無論數據是原始數據還是非結構化數據,它都有能力處理龐大的數據。
以下是Genism的一些主要功能:
它可用於構建可通過理解每個單詞的統計語義來有效分類文檔的模型。它帶有諸如Word2Vec,FastText,潛在語義分析之類的文本處理演算法,這些演算法研究文檔中的統計共現模式,以過濾掉不必要的單詞並構建僅具有重要功能的模型。提供可以導入並支持各種數據格式的I / O包裝器和讀取器。它具有簡單直觀的界面,可供初學者輕松使用。API學習曲線也很低,這解釋了為什麼許多開發人員喜歡此庫。
7. Python有沒有支持貝葉斯網路的包
Bayesian-belief-networks允許你用純Python創建貝葉斯信念網路和其他圖模型,目前支持四種不同的推理方法。
支持的圖模型
離散變數的貝葉斯信念網路
有著高斯分布的連續變數的高斯貝葉斯網路
推理引擎
消息傳遞和聯合樹演算法(Junction Tree Algorithm)
和積演算法(The Sum Proct Algorithm)
MCMC采樣的近似推理
高斯貝葉斯網路中得Exact Propagation
8. 大數據分析培訓班是什麼
到魔據條件不錯比較挺不錯的,很注重基礎教育,看合不合適。剛開始有些枯燥,入門就好了,現在缺大數據人才,好好學會有前途。如果沒有基礎一般需要5個月,雖然剛開始有些枯燥,薪資不錯。
9. 有誰知道哪個培訓班好,我想學大數據分析
CDA大數據分析就業班課程是立足於市場需求,精心打磨的就業課程,適宜0基礎需求的學習,課程內容由淺到深,讓大家逐步掌握大數據核心技術,包含了大數據技術和大數據分析,電商 金融 電力等案例實戰,學完後找工作更有自信。
第一部分 大數據平台:
大數據平台包含了採集層、存儲層、計算層和應用層,是一個復雜的IT系統,需要學會Hadoop等分布式系統的開發技能。
1.1採集層:Sqoop可用來採集導入傳統關系型資料庫的數據、Flume對於日誌型數據採集,另外使用Python一類的語言開發網路爬蟲獲取網路數據;
1.2儲存層:分布式文件系統HDFS最為常用;
1.3計算層:有不同的計算框架可以選擇,常見的如MapRece、Spark等,一般來講,如果能使用計算框架的「原生語言」,運算效率會最高(MapRece的原生支持Java
,而Spark原生支持Scala);
1.4應用層:包括結果數據的可視化、交互界面開發以及應用管理工具的開發等,更多的用到Java、Python等通用IT開發前端、後端的能力;
第二部分 大數據分析:
大數據挖掘指的是利用演算法和模型提高數據處理效率、挖掘數據價值、實現從數據到知識的轉換
2.1數據分析方法論:統計基礎 微積分(求導)代數(矩陣運算)等
2.2統計模型:方差分析、線性回歸、邏輯回歸、列聯分析、聚類分析、面板模型等
2.3數據挖掘模型:決策樹 關聯分析、SVM、神經網路 貝葉斯網路等
10. 請問你會用python實現貝葉斯網路了嗎
名函數有個限制,就是只能有一個表達式,不用寫return,返回值就是該表達式的結果。