當前位置:首頁 » 編程語言 » python處理圖片

python處理圖片

發布時間: 2022-01-14 22:37:27

python如何圖像識別

首先,先定位好問題是屬於圖像識別任務中的哪一類,最好上傳一張植物葉子的圖片。因為目前基於深度學習的卷積神經網路(CNN)確實在圖像識別任務中取得很好的效果,深度學習屬於機器學習,其研究的範式,或者說處理圖像的步驟大體上是一致的。

1、第一步,准備好數據集,這里是指,需要知道輸入、輸出(視任務而定,針對你這個問題,建議使用有監督模型)是什麼。你可以准備一個文件夾,裡面存放好植物葉子的圖像,而每張圖像對應一個標簽(有病/沒病,或者是多類別標簽,可能具體到哪一種病)。
具體實現中,會將數據集分為三個:訓練集(計算模型參數)、驗證集(調參,這個經常可以不需要實現劃分,在python中可以用scikit-learn中的函數解決。測試集用於驗證模型的效果,與前面兩個的區別是,模型使用訓練集和驗證集時,是同時使用了輸入數據和標簽,而在測試階段,模型是用輸入+模型參數,得到的預測與真實標簽進行對比,進而評估效果。
2、確定圖像識別的任務是什麼?

圖像識別的任務可以分為四個:圖像分類、目標檢測、語義分割、實例分割,有時候是幾個任務的結合。
圖像分類是指以圖像為輸入,輸出對該圖像內容分類的描述,可以是多分類問題,比如貓狗識別。通過足夠的訓練數據(貓和狗的照片-標簽,當然現在也有一系列的方法可以做小樣本訓練,這是細節了,這里並不敞開講),讓計算機/模型輸出這張圖片是貓或者狗,及其概率。當然,如果你的訓練數據還有其它動物,也是可以的,那就是圖像多分類問題。
目標檢測指將圖像或者視頻中的目標與不感興趣的部分區分開,判斷是否存在目標,並確定目標的具體位置。比如,想要確定這只狗所佩戴的眼睛的位置,輸入一張圖片,輸出眼睛的位置(可視化後可以講目標區域框出來)。

看到這里,應該想想植物葉子診斷疾病的問題,只需要輸入一整張植物葉子的圖片,輸出是哪種疾病,還是需要先提取葉子上某些感興趣區域(可能是病變區域),在用病變區域的特徵,對應到具體的疾病?
語義分割是當今計算機視覺領域的關鍵問題之一,宏觀上看,語義分割是一項高層次的任務。其目的是以一些原始圖像作為輸入,輸出具有突出顯示的感興趣的掩膜,其實質上是實現了像素級分類。對於輸入圖片,輸出其舌頭區域(注意可以是不規則的,甚至不連續的)。

而實例分割,可以說是在語義分割的基礎上,在像素層面給出屬於每個實例的像素。

看到這里,可以具體思考下自己的問題是對應其中的哪一類問題,或者是需要幾種任務的結合。

3、實際操作
可以先通過一個簡單的例子入手,先了解構建這一個框架需要准備什麼。手寫數字識別可以說是深度學習的入門數據集,其任務也經常作為該領域入門的案例,也可以自己在網上尋找。

❷ Python 讀取文件夾將裡面的圖片處理成想要的大小並保存在個指定位置

fromPILimportImage
importos.path
importglob
defconvertjpg(jpgfile,outdir,width=1280,height=720):
img=Image.open(jpgfile)
new_img=img.resize((width,height),Image.BILINEAR)
new_img.save(os.path.join(outdir,os.path.basename(jpgfile)))
forjpgfileinglob.glob("D:/python/*.jpg"):
convertjpg(jpgfile,"D:/newfile")

convertjpg調用時可以有四個參數,如convertjpg(jpgfile,"D:/newfile",800,600)

Image open了jpg用完後要不要close?

❸ 怎樣利用Python進行圖片分析

fromPILimportImage###此處為導出包,注意字母大小寫
importos,os.path

#指明被遍歷的文件夾
rootdir=os.path.abspath(os.curdir)+'/Image/'
rootdir1=os.path.abspath(os.pardir)+"/Image/"

#打包用
ifos.path.isdir(rootdir):
pass
else:
rootdir=rootdir1

size=315,560
i=0

forparent,dirnames,filenamesinos.walk(rootdir):
forfilenameinfilenames:
infile=os.path.join(parent,filename)
im=Image.open(infile)###此處Image.open(dir)為多數對象應用的基礎.
im.thumbnail(size)###此處size為長度為2的tuple類型,改變圖片解析度
im.save(infile)###im.save(dir),圖片處理的最後都用這個,就是保存處理過後的圖片
i+=1
print(i,"Done")

要用pil包 安裝如下:pipinstallpillow

❹ python可以用來處理圖像嗎

可以的,
PythonWare公司提供了免費的Python圖像處理工具包PIL(Python Image Library),該軟體包提供了基本的圖像處理功能,如:

改變圖像大小,旋轉圖像,圖像格式轉換,色場空間轉換,圖像增強,直方圖處理,插值和濾波等等。雖然在這個軟體包上要實現類似MATLAB中的復雜的圖像處理演算法並不太適合,但是Python的快速開發能力以及面向對象等等諸多特點使得它非常適合用來進行原型開發。

在PIL中,任何一副圖像都是用一個Image對象表示,而這個類由和它同名的模塊導出,因此,最簡單的形式是這樣的:

import Image img = Image.open(「dip.jpg」)
注意:第一行的Image是模塊名;第二行的img是一個Image對象;
Image類是在Image模塊中定義的。關於Image模塊和Image類,切記不要混淆了。現在,我們就可以對img進行各種操作了,所有對img的
操作最終都會反映到到dip.img圖像上。

PIL提供了豐富的功能模塊:Image,ImageDraw,ImageEnhance,ImageFile等等。最常用到的模塊是
Image,ImageDraw,ImageEnhance這三個模塊。下面我對此分別做一介紹。關於其它模塊的使用請參見說明文檔.有關PIL軟體包和
相關的說明文檔可在PythonWare的站點www.Pythonware.com上獲得。

Image模塊:

Image模塊是PIL最基本的模塊,其中導出了Image類,一個Image類實例對象就對應了一副圖像。同時,Image模塊還提供了很多有用的函數。

(1)打開一文件:
import Image img = Image.open(「dip.jpg」)

這將返回一個Image類實例對象,後面的所有的操作都是在img上完成的。

(2)調整文件大小:

import Image img = Image.open("img.jpg") new_img = img.resize
((128,128),Image.BILINEAR) new_img.save("new_img.jpg")

原來的圖像大小是256x256,現在,保存的new_img.jpg的大小是128x128。

就是這么簡單,需要說明的是Image.BILINEAR指定採用雙線性法對像素點插值。

在批處理或者簡單的Python圖像處理任務中,採用Python和PIL(Python Image Library)的組合來完成圖像處理任務是一個很不錯的選擇。設想有一個需要對某個文件夾下的所有圖像將對比度提高2倍的任務。用Python來做將是十分簡單的。當然,我也不得不承認Python在圖像處理方面的功能還比較弱,顯然還不適合用來進行濾波、特徵提取等等一些更為復雜的應用。我個人的觀點是,當你要實現這些「高級」的演算法的時候,好吧,把它交給MATLAB去完成。但是,如果你面對的只是一個通常的不要求很復雜演算法的圖像處理任務,那麼,Python圖像處理應該才是你的最佳搭檔。

❺ 怎樣使用Python圖像處理

Python圖像處理是一種簡單易學,功能強大的解釋型編程語言,它有簡潔明了的語法,高效率的高層數據結構,能夠簡單而有效地實現面向對象編程,下文進行對Python圖像處理進行說明。
當然,首先要感謝「戀花蝶」,是他的文章「用Python圖像處理 」 幫我堅定了用Python和PIL解決問題的想法,對於PIL的一些介紹和基本操作,可以看看這篇文章。我這里主要是介紹點我在使用過程中的經驗。
PIL可以對圖像的顏色進行轉換,並支持諸如24位彩色、8位灰度圖和二值圖等模式,簡單的轉換可以通過Image.convert(mode)函數完 成,其中mode表示輸出的顏色模式。例如''L''表示灰度,''1''表示二值圖模式等。
但是利用convert函數將灰度圖轉換為二值圖時,是採用固定的閾 值127來實現的,即灰度高於127的像素值為1,而灰度低於127的像素值為0。為了能夠通過自定義的閾值實現灰度圖到二值圖的轉換,就要用到 Image.point函數。
深度剖析Python語法功能
深度說明Python應用程序特點
對Python資料庫進行學習研究
Python開發人員對Python經驗之談
對Python動態類型語言解析

Image.point函數有多種形式,這里只討論Image.point(table, mode),利用該函數可以通過查表的方式實現像素顏色的模式轉換。其中table為顏色轉換過程中的映射表,每個顏色通道應當有256個元素,而 mode表示所輸出的顏色模式,同樣的,''L''表示灰度,''1''表示二值圖模式。
可見,轉換過程的關鍵在於設計映射表,如果只是需要一個簡單的箝位值,可以將table中高於或低於箝位值的元素分別設為1與0。當然,由於這里的table並沒有什麼特殊要求,所以可以通過對元素的特殊設定實現(0, 255)范圍內,任意需要的一對一映射關系。
示例代碼如下:
import Image # load a color image im = Image.open(''fun.jpg'') # convert to grey level image Lim = im.convert(''L'') Lim.save(''fun_Level.jpg'') # setup a converting table with constant threshold threshold = 80 table = [] for i in range(256): if i < threshold: table.append(0) else: table.append(1) # convert to binary image by the table bim = Lim.point(table, ''1'') bim.save(''fun_binary.jpg'')

IT部分通常要完成的任務相當繁重但支撐這些工作的資源卻很少,這已經成為公開的秘密。任何承諾提高編碼效率、降低軟體總成本的IT解決方案都應該進行 周到的考慮。Python圖像處理所具有的一個顯著優勢就是可以在企業的軟體創建和維護階段節約大量資金,而這兩個階段的軟體成本佔到了軟體整個生命周期中總成本 的50%到95%。
Python清晰可讀的語法使得軟體代碼具有異乎尋常的易讀性,甚至對那些不是最初接觸和開發原始項目的程序員都 能具有這樣的強烈感覺。雖然某些程序員反對在Python代碼中大量使用空格。
不過,幾乎人人都承認Python圖像處理的可讀性遠勝於C或者Java,後兩 者都採用了專門的字元標記代碼塊結構、循環、函數以及其他編程結構的開始和結束。提倡Python的人還宣稱,採用這些字元可能會產生顯著的編程風格差 異,使得那些負責維護代碼的人遭遇代碼可讀性方面的困難。轉載

❻ python處理圖像何時要將圖像轉化為uint8格式uint8是什麼用array()方法打開圖像後圖像是什麼格式

1. uint8是無符號八位整型,表示範圍是[0, 255]的整數

2. Python處理圖像個人主要推薦下面兩種

a) PIL (pip install pillow),這個比較原生,並且處理過程中一直是uint8

fromPILimportImage
importnumpyasnp
im=Image.open('test.jpg')#從讀入就是uint8
npim=np.array(im)#轉換成numpyarray處理

b) cv2 (pip install opencv-python),opencv的python實現

importcv2
im=cv2.imread('test.jpg')#讀入默認是uint8格式的numpyarray

一般情況直接用uint8即可,若是有需求(如神經網路等),可以轉換成浮點數等形式。如果需要轉回PIL的圖像對象,那就必須是uint8的格式。如果一直用cv2的話,也可以直接保存浮點數形式的(注意是0~255,不是0~1)。

❼ 使用python PIL處理圖片。怎麼獲取圖片的像素數據

importimage
importsys
img=image.open("圖片位置")
width=img.size[0]
height=img.size[1]
forwinrange(width):
forhinrange(height):
pixel=img.getpixel(w,h)
printpixel

#width,height是圖片的寬度與長度
#pixel是像素值

❽ python怎麼打開圖片

使用python進行數字圖片處理,可以使用pillow包,它是由PIL fork發展而來的。使用時需要import從PIL fork中導出。同時使用open()函數來打開圖片,使用show()函數來顯示圖片。

❾ python圖像處理如何去掉圖片中的鐵絲網

介紹三種方法(也就是你說得功能)

1、使用仿製圖章工具去除

2、使用修補工具去除

3、使用修復畫筆工具去除

試試吧,祝你成功!

❿ python批量處理圖片

用生成器,每次生成一批處理

熱點內容
查詢伺服器連接地址 發布:2024-11-15 13:27:20 瀏覽:504
win8用戶文件夾轉移 發布:2024-11-15 13:21:24 瀏覽:73
批量緩存淘寶教育上的視頻 發布:2024-11-15 13:20:44 瀏覽:723
如何確定手機是不是安卓 發布:2024-11-15 13:19:33 瀏覽:734
loadingbuffer怎麼配置 發布:2024-11-15 13:16:57 瀏覽:797
安卓婉兒最低市戰力在哪裡 發布:2024-11-15 13:04:02 瀏覽:852
安卓如何設置圖片模式 發布:2024-11-15 13:00:27 瀏覽:497
機房怎麼用電腦連接伺服器 發布:2024-11-15 12:52:24 瀏覽:561
刪資料庫事件 發布:2024-11-15 12:10:54 瀏覽:457
資料庫選課管理系統 發布:2024-11-15 12:10:15 瀏覽:128