當前位置:首頁 » 編程語言 » python數據可視化教程

python數據可視化教程

發布時間: 2022-08-02 21:56:38

A. python 怎樣數據可視化 3d

准備工作

基本來講,我們仍然需要創建一個圖表並把想要的坐標軸添加到上面。但不同的是我們為圖表指定的是3D視圖,並且添加的坐標軸是Axes3D。

現在,我們可以使用幾乎相同的函數來繪圖了。當然,函數的參數是不同的,需要為3個坐標軸提供數據。

例如,我們要為函數mpl_toolkits.mplot3d.Axes3D.plot指定xs、ys、zs和zdir參數。其他的參數則直接傳給matplotlib.axes.Axes.plot。下面來解釋一下這些特定的參數。

1.xs和ys:x軸和y軸坐標。

2.zs:這是z軸的坐標值,可以是所有點對應一個值,或者是每個點對應一個值。

3.zdir:決定哪個坐標軸作為z軸的維度(通常是zs,但是也可以是xs或者ys)。

提示:模塊mpl_toolkits.mplot3d.art3d包含了3D artist代碼和將2D artists轉化為3D版本的函數。在該模塊中有一個rotate_axes方法,該方法可以被添加到Axes3D中來對坐標重新排序,這樣坐標軸就與zdir一起旋轉了。zdir默認值為z。在坐標軸前加一個'``-``'會進行反轉轉換,這樣一來,zdir的值就可以是x、-x、y、-y、z或者-z。

操作步驟

以下代碼演示了我們所解釋的概念。
import random

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

from mpl_toolkits.mplot3d import Axes3D

mpl.rcParams['font.size'] = 10

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

for z in [2011, 2012, 2013, 2014]:
xs = xrange(1,13)
ys = 1000 * np.random.rand(12)

color =plt.cm.Set2(random.choice(xrange(plt.cm.Set2.N)))
ax.bar(xs, ys, zs=z, zdir='y', color=color, alpha=0.8)

ax.xaxis.set_major_locator(mpl.ticker.FixedLocator(xs))
ax.yaxis.set_major_locator(mpl.ticker.FixedLocator(ys))

ax.set_xlabel('Month')
ax.set_ylabel('Year')
ax.set_zlabel('Sales Net [usd]')

plt.show()

B. 如何評價利用python製作數據採集,計算,可視化界面呢

先來設置兩個url地址,第一個用於第一次訪問,這樣可以獲得網站伺服器發來的cookie,第二個網址是用於登陸的地址
引入兩個模塊,cookielib和urllib2
接著,我們安裝一個cookie處理器,代碼如下,這個代碼很多人不太能讀懂,其實你會用就可以了,他們就是這個固定的形式,頂多改改變數的名字。你復制下來以後自己用就可以了,用多了,你再去看代碼的意義,你就都懂了。
然後我們先訪問一下網站,獲得一個cookie,你不用管這個cookie該怎麼弄,前面設置的cookie處理器會自動處理。
接著,我們寫一下postdata,也就是你要post的數據,因為我們打算登陸網站,所以postdata里肯定有用戶名和密碼,那麼怎麼知道該怎麼寫postdata呢?看你抓包得到的post數據。下面第一幅圖是httpwatch抓包截圖,點擊postdata,看到post的數據,然後我們看第二幅圖,就是python的寫法。你自己感受一下。
寫完postdata以後,我們 要將postdata轉碼一下,讓伺服器可以解讀postdata數據
接著設置headers信息,headers也是抓包得到的。同樣的方式,你去寫header內的信息
然後我們通過request方法來登陸網站,並返回數據,返回的數據存儲在request中
通過rulopen方法和read方法來讀取數據,並列印出來。
我們看到輸出的結果,這說明我們雖然正確的模擬了登陸網站需要的post信息,但是沒有考慮到登陸網站是需要驗證碼的,後期我們會看到如何處理驗證碼,如果你拿這個教程去處理沒有驗證碼的登陸問題,那麼你現在已經成功了。

C. python可視化

不會就去學啊,先找Python文本讀取的例子,再找可視化模塊。
編程,自己不碼代碼,那還不如不學,學也白學的。

D. Python中除了matplotlib外還有哪些數據可視化的庫

數據可視化是展示數據、理解數據的有效手段,常用的Python數據可視化庫如下:
1.Matplotlib:第一個Python可視化庫,有許多別的程序庫都是建立在其基礎上或者直接調用該庫,可以很方便地得到數據的大致信息,功能非常強大,但也非常復雜。
2.Seaborn:利用Matplotlib,用簡潔的代碼來製作好看的圖表,與Matplotlib最大的區別為默認繪圖風格和色彩搭配都具有現代美感。
3.ggplot:基於R的一個作圖庫的ggplot2,同時利用了源於《圖像語法》中的概念,允許疊加不同的圖層來完成一幅圖,並不適用於製作非常個性化的圖像,為操作的簡潔度而犧牲了圖像的復雜度。
4.Bokeh:與ggplot很相似,但與ggplot不同之處為它完全基於Python而不是從R處引用。長處在於能用於製作可交互、可直接用於網路的圖表。圖表可以輸出為JSON對象、HTML文檔或者可交互的網路應用。
5.Plotly:可以通過Python notebook使用,與bokeh一樣致力於交互圖表的製作,但提供在別的庫中幾乎沒有的幾種圖表類型,如等值線圖、樹形圖和三維圖表。
6.pygal:與Bokeh和Plotly一樣,提供可直接嵌入網路瀏覽器的可交互圖像。與其他兩者的主要區別在於可將圖表輸出為SVG格式,所有的圖表都被封裝成方法,且默認的風格也很漂亮,用幾行代碼就可以很容易地製作出漂亮的圖表。
7.geoplotlib:用於製作地圖和地理相關數據的工具箱。可用來製作多種地圖,比如等值區域圖、熱度圖、點密度圖等,必須安裝Pyglet方可使用。
8.missingno:用圖像的方式快速評估數據缺失的情況,可根據數據的完整度對數據進行排序或過濾,或者根據熱度圖或樹狀圖對數據進行修正。

E. Python中數據可視化的兩個庫!

1、Matplotlib

Matplotlib是最全面的Python數據可視化庫。

有人認為Matplotlib的界面很難看,但筆者認為,作為最基礎的Python數據可視化庫,Matplotlib能為使用者的可視化目標提供最大的可能性。

使用JavaScript的開發者們也有各自偏好的可視化庫,但當所處理的任務中涉及大量不被高級庫所支持的定製功能時,開發者們就必須用到D3.js。Matplotlib也是如此。

2、Plotly

雖然堅信要進行數據可視化,就必須得掌握Matplotlib,但大多數情況下讀者更願意使用Plotly,因為使用Plotly只需要寫最少的代碼就能得出最多彩繽紛的圖像。

無論是想構造一張3D表面圖,或是一張基於地圖的散點圖,又或是一張交互性動畫圖,Plotly都能在最短的時間內滿足要求。

Plotly還提供一個表格工作室,使用者可以將自己的可視化上傳到一個在線存儲庫中以便未來進行編輯。

更多Python知識,請關注Python視頻教程!

F. 如何讓python可視化

簡介

在 Python 中,將數據可視化有多種選擇,正是因為這種多樣性,何時選用何種方案才變得極具挑戰性。本文包含了一些較為流行的工具以及如何使用它們來創建簡單的條形圖,我將使用下面幾種工具來完成繪圖示例:

  • Pandas

  • Seaborn

  • ggplot

  • Bokeh

  • pygal

  • Plotly

  • 在示例中,我將使用 pandas 處理數據並將數據可視化。大多數案例中,使用上述工具時無需結合 pandas,但我認為 pandas 與可視化工具結合是非常普遍的現象,所以以這種方式開啟本文是很棒的。

    什麼是 Matplotlib?

    Matplotlib是眾多 Python 可視化包的鼻祖。其功能非常強大,同時也非常復雜。你可以使用 Matplotlib 去做任何你想做的事情,但是想要搞明白卻並非易事。我不打算展示原生的 Matplotlib 例子,因為很多工具(特別是 Pandas 和 Seaborn)是基於 Matplotlib 的輕量級封裝,如果你想了解更多關於 Matplotlib 的東西,在我的這篇文章—《simple graphing》中有幾個例子可供參考。

    Matplotlib 令我最不滿的地方是它花費太多工作來獲得目視合理的圖表,但是在本文的某些示例中,我發現無需太多代碼就可以輕松獲得漂亮的可視化圖表。關於 Matplotlib 冗長特點的示例,可以參考這篇文章《ggplot》中的平面圖示例。

    方法論

    簡要說一下本文的方法論。我堅信只要讀者開始閱讀本文,他們將會指出使用這些工具的更好方法。我的目標並非在每個例子中創造出完全相同的圖表,而是花費大致相同的時間探索方法,從而在每個例子中以大體相同的方法將數據可視化。

    在這個過程中,我所面臨的最大挑戰是格式化 x 軸和 y 軸以及基於某些大的標簽讓數據看起來合理,弄明白每種工具是如何格式化數據的也花費了我不少精力,我搞懂這些之後,剩餘的部分就相對簡單了。

    另外還需要注意的一點是,條形圖可能是製作起來相對更簡單的圖表,使用這些工具可以製作出多種類型的圖表,但是我的示例更加側重的是簡易的格式化,而不是創新式的可視化。另外,由於標簽眾多,導致一些圖表占據了很多空間,所以我就擅自移除了它們,以保證文章長度可控。最後,我又調整了圖片尺寸,所以圖片的任何模糊現象都是縮放導致的問題,並不代表真實圖像的質量。

    最後一點,我以一種嘗試使用 Excel 另外一款替代品的心態來實現示例。我認為我的示例在報告、展示、郵件或者靜態網頁中都更具說服力。如果你正在評估用於實時可視化數據的工具,亦或是通過其他途徑去分享,那麼其中的部分工具會提供很多我還未涉獵到的功能。

    數據集

    之前的文章描述了我們要處理的數據,我從每一類中抽取了更深一層的樣例,並選用了更詳細的元素。這份數據集包含了125行,但是為了保持簡潔,我只選用了前10行,完整的數據集可以在這里找到。

熱點內容
怎麼看筆記本配置好壞怎麼對比 發布:2025-01-23 08:50:00 瀏覽:514
安卓q用起來怎麼樣 發布:2025-01-23 08:49:14 瀏覽:294
foreach資料庫 發布:2025-01-23 08:49:05 瀏覽:741
什麼是車棚配置 發布:2025-01-23 08:42:58 瀏覽:312
智能電視盒子無線網密碼在哪裡 發布:2025-01-23 08:42:14 瀏覽:277
代理提取源碼 發布:2025-01-23 08:41:35 瀏覽:62
nas網路伺服器為什麼貴 發布:2025-01-23 08:00:00 瀏覽:941
語音伺服器未連接如何連接視頻 發布:2025-01-23 07:59:11 瀏覽:883
日流量10萬需要什麼類型伺服器 發布:2025-01-23 07:58:27 瀏覽:501
伺服器獲取地址失敗 發布:2025-01-23 07:55:18 瀏覽:850