hivesql和
A. hive和sparksql的區別
歷史上存在的原理,以前都是使用hive來構建數據倉庫,所以存在大量對hive所管理的數據查詢的需求。而hive、shark、sparlSQL都可以進行hive的數據查詢。shark是使用了hive的sql語法解析器和優化器,修改了執行器,使之物理執行過程是跑在spark上;而sparkSQL是使用了自身的語法解析器、優化器和執行器,同時sparkSQL還擴展了介面,不單單支持hive數據的查詢,可以進行多種數據源的數據查詢。
B. spark SQL和hive到底什麼關系
Hive是一種基於HDFS的數據倉庫,並且提供了基於SQL模型的,針對存儲了大數據的數據倉庫,進行分布式交互查詢的查詢引擎。
SparkSQL並不能完全替代Hive,它替代的是Hive的查詢引擎,SparkSQL由於其底層基於Spark自身的基於內存的特點,因此速度是Hive查詢引擎的數倍以上,Spark本身是不提供存儲的,所以不可能替代Hive作為數據倉庫的這個功能。
SparkSQL相較於Hive的另外一個優點,是支持大量不同的數據源,包括hive、json、parquet、jdbc等等。SparkSQL由於身處Spark技術堆棧內,基於RDD來工作,因此可以與Spark的其他組件無縫整合使用,配合起來實現許多復雜的功能。比如SparkSQL支持可以直接針對hdfs文件執行sql語句。
C. hive是sql還是java語言
hive是基於Hadoop的一個數據倉庫工具,可以將結構化的數據文件映射為一張資料庫表,並提供簡單的sql查詢功能,可以將sql語句轉換為MapRece任務進行運行
D. HiveSQL,SQL語句處理,怎麼實現
不是很懂你的意思,是指在(getdate()-7)的那天注冊並登錄的用戶數sumUser和在getdate()里有登錄的用戶數userNum(getdate()-7注冊並登陸的),這兩個數的比例?
select cast(case when sumUser=0 then 0 else userNum/sumUser*100 end as varchar(2))+'%' as 留存率 from
(select
count(nowlogin.openid) as userNum,
count(newlogin.openid)as sumUser
from
(select aa.openid,aa.ftime from t_login_all as aa right join t_login_new as bb on aa.openid=bb.openid and bb.ftime=getdate()-7) as nowlogin,
(select openid from t_login_new where ftime=getdate()-7) as newlogin
where nowlogin.ftime=getdate() and nowlogin.openid=newlogin.openid
) as a
E. hive sql 優化的常用手段有哪些
1、join連接時的優化:當三個或多個以上的表進行join操作時,如果每個on使用相同的欄位連接時只會產生一個maprece。
2、join連接時的優化:當多個表進行查詢時,從左到右表的大小順序應該是從小到大。原因:hive在對每行記錄操作時會把其他表先緩存起來,直到掃描最後的表進行計算
3、在where字句中增加分區過濾器。
4、當可以使用left semi join 語法時不要使用inner join,前者效率更高。原因:對於左表中指定的一條記錄,一旦在右表中找到立即停止掃描。
F. hive什麼進行sql處理
是指在(getdate()-7)的那天注冊並登錄的用戶數sumUser和在getdate()里有登錄的用戶數userNum(getdate()-7注冊並登陸的),這兩個數的比例?
select cast(case when sumUser=0 then 0 else userNum/sumUser*100 end as varchar(2))+'%' as 留存率 from
(select
count(nowlogin.openid) as userNum,
count(newlogin.openid)as sumUser
from
(select aa.openid,aa.ftime from t_login_all as aa right join t_login_new as bb on aa.openid=bb.openid and bb.ftime=getdate()-7) as nowlogin,
(select openid from t_login_new where ftime=getdate()-7) as newlogin
where nowlogin.ftime=getdate() and nowlogin.openid=newlogin.openid
) as a
G. hive sql和mysql的關鍵詞用法有什麼不同
當然不是,hive支持jdbc和odbc數據源連接,可以連接很多種資料庫,mysql、oracle等等等等,它自己的metastore用的就是derbyDB。 具體的連接方法在官網上有說明,使用odbc需要重新編譯相關組件。hive通過jdbc連接其他資料庫的教程在google上一搜
應該是Hadoop在hbase和Hive中的作用吧。 hbase與hive都是架構在hadoop之上的。都是用hadoop作為底層存儲。而hbase是作為分布式資料庫,而hive是作為分布式數據倉庫。當然hive還是借用hadoop的MapRece來完成一些hive中的命令的執行。
H. hive和mysql的區別是什麼
1、查詢語言不同:
hive是hql語言,mysql是sql語句;
2、數據存儲位置不同:
hive是把數據存儲在hdfs上,而mysql數據是存儲在自己的系統中;
3、數據格式不同:
hive數據格式可以用戶自定義,mysql有自己的系統定義格式;
4、數據更新不同:
hive不支持數據更新,只可以讀,不可以寫,而sql支持數據更新。
I. hive查詢語言和sql的區別
Hive是建立在 Hadoop 上的數據倉庫基礎構架。它提供了一系列的工具,可以用來進行數據提取轉化載入(ETL),這是一種可以存儲、查詢和分析存儲在 Hadoop 中的大規模數據的機制。Hive 定義了簡單的類 SQL 查詢語言,稱為 HQL,它允許熟悉 SQL 的用戶查詢數據。同時,這個語言也允許熟悉 MapRece 開發者的開發自定義的 mapper 和 recer 來處理內建的 mapper 和 recer 無法完成的復雜的分析工作。
Hive 採用類SQL 的查詢方式,將SQL 查詢轉換為MapRece 的job 在Hadoop集群上執行