python分類演算法
Python演算法的特徵
1. 有窮性:演算法的有窮性指演算法必須能在執行有限個步驟之後終止;
2. 確切性:演算法的每一步驟必須有確切的定義;
3. 輸入項:一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
4. 輸出項:一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果,沒有輸出的演算法是毫無意義的;
5. 可行性:演算法中執行的任何計算步驟都是可以被分解為基本的可執行操作步,即每個計算步都可以在有限時間內完成;
6. 高效性:執行速度快、佔用資源少;
7. 健壯性:數據響應正確。
Python演算法分類:
1.
冒泡排序:是一種簡單直觀的排序演算法。重復地走訪過要排序的數列,一次比較兩個元素,如果順序錯誤就交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該排序已經完成。
2.
插入排序:沒有冒泡排序和選擇排序那麼粗暴,其原理最容易理解,插入排序是一種最簡單直觀的排序演算法啊,它的工作原理是通過構建有序序列,對於未排序數據在已排序序列中從後向前排序,找到對應位置。
3.
希爾排序:也被叫做遞減增量排序方法,是插入排序的改進版本。希爾排序是基於插入排序提出改進方法的排序演算法,先將整個待排序的記錄排序分割成為若干個子序列分別進行直接插入排序,待整個序列中的記錄基本有序時,再對全記錄進行依次直接插入排序。
4. 歸並排序:是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法Divide and的一個非常典型的應用。
5. 快速排序:由東尼·霍爾所發展的一種排序演算法。又是一種分而治之思想在排序演算法上的典型應用,本質上快速排序應該算是冒泡排序基礎上的遞歸分治法。
6.
堆排序:是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質,即子結點的鍵值或索引總是小於它的父結點。
7.
計算排序:其核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中,作為一種線性時間復雜度的排序,計算排序要求輸入的數據必須是具有確定范圍的整數。
❷ 葡萄酒分類python演算法
葡萄酒的品種很多,因葡萄的栽培、葡萄酒生產工藝條件的不同,產品風格各不相同。
以成品顏色來說,可分為紅葡萄酒、白葡萄酒及粉紅葡萄酒三類。其中紅葡萄酒又可細分為干紅葡萄酒、半干紅葡萄酒、半甜紅葡萄酒和甜紅葡萄酒。白葡萄酒則細分為干白葡萄酒、半干白葡萄酒、半甜白葡萄酒和甜白葡萄酒。以釀造方式來說,可以分為葡萄酒、氣泡葡萄酒、加烈葡萄酒和加味葡萄酒四類。
一般按酒的顏色深淺、含糖量多少、含不含二氧化碳及採用的釀造方法來分類,國外也有採用以產地、原料名稱來分類的。按照國際葡萄酒組織的規定,葡萄酒只能是破碎或未破碎的新鮮葡萄果實或汁完全或部分酒精發酵後獲得的飲料,其酒精度一般在8.5°到16.2°之間;按照我國最新的葡萄酒標准GB15037-2006規定,葡萄酒是以鮮葡萄或葡萄汁為原料,經全部或部分發酵釀制而成的,酒精度不低於7.0%的酒精飲品。
❸ Python分類演算法問題
#coding=utf-8
#usingpython27
l1=['a','c','t']
l2=['3412a34214','fgfghc','34242c34534','dsdfgdfcdfgdcccccg']
print[filter(lambdax:iinx,l2)foriinl1]
結果:
[['3412a34214'],['fgfghc','34242c34534','dsdfgdfcdfgdcccccg'],[]]
結果返回一個包含3個一維列表的二維列表, 第一個一維列表為包含『a』的一類,第二個一維列表為包含『c』的一類,第三個為包含『t'的一類
❹ python分類演算法有哪些
常見的分類演算法有:
K近鄰演算法
決策樹
樸素貝葉斯
SVM
Logistic Regression
❺ 怎麼用演算法分類曲線,python
#!/usr/bin/envpython#-*-coding:utf-8-*-########################Info:CurveSimplify#Version1.0#Author:AlexPan#Date:2017-07-11#########################DataTypeuintType=np.uint8
floatType=np.float32##-----------------------------------------------------------------------------------##GetDistanceBetweenpointand[line_start-line_end]LinedefgetPoint2LineDistance(point,line_start,line_end):
#Exception
ifnotisinstance(point,np.ndarray)ornotisinstance(line_start,np.ndarray)ornotisinstance(line_end,np.ndarray):raiseTypeError('AllpointsMUSTbenumpy.ndarray!')elifpoint.ndim!=1orpoint.shape!=line_start.shapeorpoint.shape!=line_end.shape:raiseValueError('!')elif(line_start==line_end).all():raiseException('line_startistheSAMEasline_end!')returnnp.sqrt(np.sum(np.square(point-line_start))-np.square(np.sum((line_end-line_start)*(point-line_start)))/np.sum(np.square(line_end-line_start),dtype=floatType))##-----------------------------------------------------------------------------------##Constrcuctnp.linspaceArraybetweenraw_array[index_start]andraw_array[index_end]defgetLinspaceArray(raw_array,index_start,index_end):
#Exception
ifnotisinstance(raw_array,np.ndarray):raiseTypeError('raw_arrayMUSTbenumpy.ndarray!')elifindex_start<0orindex_end>raw_array.shape[0]orindex_start>index_end:raiseValueError('index_startorindex_endINVALID!')#ReconstructArraybynp.linspaceBasedonkeyIndexes
linspaceArray=np.linspace(raw_array[index_start][0],raw_array[index_end][0],num=index_end-index_start+1,endpoint=True,dtype=floatType)foriinxrange(1,raw_array.shape[1]):
linspaceArray=np.row_stack((linspaceArray,np.linspace(raw_array[index_start][i],raw_array[index_end][i],num=index_end-index_start+1,endpoint=True,dtype=floatType)))returnnp.transpose(linspaceArray)##-----------------------------------------------------------------------------------##(array_A,array_B):
#Exception
ifnotisinstance(array_A,np.ndarray)ornotisinstance(array_B,np.ndarray):raiseTypeError('array_Aandarray_BMUSTbenumpy.ndarray!')elifarray_A.shape!=array_B.shape:raiseValueError('array_Aandarray_BdimensionsNOTmatched!')#Vector
ifarray_A.ndim==array_B.ndim==1:returnnp.sqrt(np.sum(np.square(array_A-array_B)))#Array
error_array=array_A-array_B
error_list=[np.sqrt(np.sum(np.square(error)))forerrorinerror_array]returnfloat(sum(error_list))/len(error_list)##-----------------------------------------------------------------------------------##(poses_array,max_key=10,error_threshold=0.05):
#Exception
ifnotisinstance(poses_array,np.ndarray):raiseTypeError('poses_arrayMUSTbenumpy.ndarray!')#Initialize
N_poses,M_poses=poses_array.shape
keyIndexes=[0,N_poses-1]
reconstructArray=getLinspaceArray(raw_array=poses_array,index_start=keyIndexes[0],index_end=keyIndexes[-1])#Divide
flagContinue=True
whileflagContinue:
keyIndexes.sort()
keyDeltas=[(keyIndexes[i],keyIndexes[i+1])foriinxrange(len(keyIndexes)-1)]forkeyStart,keyEndinkeyDeltas:
distanceList=[getPoint2LineDistance(point=poses_array[i],line_start=poses_array[keyStart],line_end=poses_array[keyEnd])foriinxrange(keyStart+1,keyEnd)]
keyNew=keyStart+distanceList.index(max(distanceList))+1
keyIndexes.append(keyNew)#Reconstruct[keyStart-keyNew]&[keyNew-keyEnd]
reconstructArray[keyStart:keyNew+1]=getLinspaceArray(raw_array=poses_array,index_start=keyStart,index_end=keyNew)
reconstructArray[keyNew:keyEnd+1]=getLinspaceArray(raw_array=poses_array,index_start=keyNew,index_end=keyEnd)
reconstructError=computeReconstructError(poses_array,reconstructArray)#PrintScreen
printcolored('keyNum:','magenta'),len(keyIndexes)print'recError:',colored(str(reconstructError),'white')#ipdb.set_trace()
#EndCondition:KeyNumorReconstructError
iflen(keyIndexes)==max_keyorreconstructError<error_threshold:
flagContinue=False
break
keyIndexes.sort()returnkeyIndexes,reconstructError
❻ python分類演算法有哪些
python雖然具備很多高級模塊,也是自帶電池的編程語言,但是要想做一個合格的程序員,基本的演算法還是需要掌握,本文主要介紹列表的一些排序演算法
遞歸是演算法中一個比較核心的概念,有三個特點,1
調用自身
2
具有結束條件
3
代碼規模逐漸減少
❼ 請問怎麼學習Python
分享Python學習路線:
第一階段:Python基礎與Linux資料庫
這是Python的入門階段,也是幫助零基礎學員打好基礎的重要階段。你需要掌握Python基本語法規則及變數、邏輯控制、內置數據結構、文件操作、高級函數、模塊、常用標准庫模板、函數、異常處理、mysql使用、協程等知識點。
學習目標:掌握Python的基本語法,具備基礎的編程能力;掌握Linux基本操作命令,掌握MySQL進階內容,完成銀行自動提款機系統實戰、英漢詞典、歌詞解析器等項目。
第二階段:web全棧
這一部分主要學習web前端相關技術,你需要掌握html、cssJavaScript、JQuery、Bootstrap、web開發基礎、Vue、FIask Views、FIask模板、資料庫操作、FIask配置等知識。
學習目標:掌握web前端技術內容,掌握web後端框架,熟練使用FIask、Tornado、Django,可以完成數據監控後台的項目。
第三階段:數據分析+人工智慧
這部分主要是學習爬蟲相關的知識點,你需要掌握數據抓取、數據提取、數據存儲、爬蟲並發、動態網頁抓取、scrapy框架、分布式爬蟲、爬蟲攻防、數據結構、演算法等知識。
學習目標:可以掌握爬蟲、數據採集,數據機構與演算法進階和人工智慧技術。可以完成爬蟲攻防、圖片馬賽克、電影推薦系統、地震預測、人工智慧項目等階段項目。
第四階段:高級進階
這是Python高級知識點,你需要學習項目開發流程、部署、高並發、性能調優、Go語言基礎、區塊鏈入門等內容。
學習目標:可以掌握自動化運維與區塊鏈開發技術,可以完成自動化運維項目、區塊鏈等項目。
按照上面的Python學習路線圖學習完後,你基本上就可以成為一名合格的Python開發工程師。當然,想要快速成為企業競聘的精英人才,你需要有好的老師指導,還要有較多的項目積累實戰經驗。
對於Python開發有興趣的小夥伴們,不妨先從看看Python開發教程開始入門!B站上有很多的Python教學視頻,從基礎到高級的都有,還挺不錯的,知識點講的很細致,還有完整版的學習路線圖。也可以自己去看看,下載學習試試。
❽ python中演算法是干什麼用的
可以做分類。通常是做文本分類。 在此基礎上做郵件的垃圾郵件過濾。還有自動識別效果也不錯。
這是一個常見的演算法。而且用處挺多的。 在語言分析里常用。比如:我有一組文件,想自動分成不同的類別。 再比如我有一個文章,想根據內容,自動分鍛落。再比如有很多新聞,可以自動按行業進行分類。
這個演算法有自學習,也就是機器學習的擴展。所以可以讓演算法自動升級精度。開始50-70%,後來可以達到90%的分類精度。
❾ python scikit-learn 有什麼演算法
1,前言
很久不發文章,主要是Copy別人的總感覺有些不爽,所以整理些干貨,希望相互學習吧。不啰嗦,進入主題吧,本文主要時說的為樸素貝葉斯分類演算法。與邏輯回歸,決策樹一樣,是較為廣泛使用的有監督分類演算法,簡單且易於理解(號稱十大數據挖掘演算法中最簡單的演算法)。但其在處理文本分類,郵件分類,拼寫糾錯,中文分詞,統計機器翻譯等自然語言處理范疇較為廣泛使用,或許主要得益於基於概率理論,本文主要為小編從理論理解到實踐的過程記錄。
2,公式推斷
一些貝葉斯定理預習知識:我們知道當事件A和事件B獨立時,P(AB)=P(A)(B),但如果事件不獨立,則P(AB)=P(A)P(B|A)。為兩件事件同時發生時的一般公式,即無論事件A和B是否獨立。當然也可以寫成P(AB)=P(B)P(A|B),表示若要兩件事同事發生,則需要事件B發生後,事件A也要發生。
由上可知,P(A)P(B|A)= P(B)P(A|B)
推出P(B|A)=
其中P(B)為先驗概率,P(B|A)為B的後驗概率,P(A|B)為A的後驗概率(在這里也為似然值),P(A)為A的先驗概率(在這也為歸一化常量)。
由上推導可知,其實樸素貝葉斯法就是在貝葉斯定理基礎上,加上特徵條件獨立假設,對特定輸入的X(樣本,包含N個特徵),求出後驗概率最大值時的類標簽Y(如是否為垃圾郵件),理解起來比邏輯回歸要簡單多,有木有,這也是本演算法優點之一,當然運行起來由於得益於特徵獨立假設,運行速度也更快。
8. Python代碼
# -*-coding: utf-8 -*-
importtime
fromsklearn import metrics
fromsklearn.naive_bayes import GaussianNB
fromsklearn.naive_bayes import MultinomialNB
fromsklearn.naive_bayes import BernoulliNB
fromsklearn.neighbors import KNeighborsClassifier
fromsklearn.linear_model import LogisticRegression
fromsklearn.ensemble import RandomForestClassifier
fromsklearn import tree
fromsklearn.ensemble import GradientBoostingClassifier
fromsklearn.svm import SVC
importnumpy as np
importurllib
# urlwith dataset
url ="-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
#download the file
raw_data= urllib.request.urlopen(url)
#load the CSV file as a numpy matrix
dataset= np.loadtxt(raw_data, delimiter=",")
#separate the data from the target attributes
X =dataset[:,0:7]
#X=preprocessing.MinMaxScaler().fit_transform(x)
#print(X)
y =dataset[:,8]
print(" 調用scikit的樸素貝葉斯演算法包GaussianNB ")
model= GaussianNB()
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print(" 調用scikit的樸素貝葉斯演算法包MultinomialNB ")
model= MultinomialNB(alpha=1)
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print(" 調用scikit的樸素貝葉斯演算法包BernoulliNB ")
model= BernoulliNB(alpha=1,binarize=0.0)
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print(" 調用scikit的KNeighborsClassifier ")
model= KNeighborsClassifier()
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print(" 調用scikit的LogisticRegression(penalty='l2')")
model= LogisticRegression(penalty='l2')
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print(" 調用scikit的RandomForestClassifier(n_estimators=8) ")
model= RandomForestClassifier(n_estimators=8)
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print(" 調用scikit的tree.DecisionTreeClassifier()")
model= tree.DecisionTreeClassifier()
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print(" 調用scikit的GradientBoostingClassifier(n_estimators=200) ")
model= GradientBoostingClassifier(n_estimators=200)
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
print(" 調用scikit的SVC(kernel='rbf', probability=True) ")
model= SVC(kernel='rbf', probability=True)
start_time= time.time()
model.fit(X,y)
print('training took %fs!' % (time.time() - start_time))
print(model)
expected= y
predicted= model.predict(X)
print(metrics.classification_report(expected,predicted))
print(metrics.confusion_matrix(expected,predicted))
"""
# 預處理代碼集錦
importpandas as pd
df=pd.DataFrame(dataset)
print(df.head(3))
print(df.describe())##描述性分析
print(df.corr())##各特徵相關性分析
##計算每行每列數據的缺失值個數
defnum_missing(x):
return sum(x.isnull())
print("Missing values per column:")
print(df.apply(num_missing, axis=0)) #axis=0代表函數應用於每一列
print(" Missing values per row:")
print(df.apply(num_missing, axis=1).head()) #axis=1代表函數應用於每一行"""
❿ python中有哪些簡單的演算法
首先謝謝邀請,
python中有的演算法還是比較多的?
python之所以火是因為人工智慧的發展,人工智慧的發展離不開演算法!
感覺有本書比較適合你,不過可惜的是這本書沒有電子版,只有紙質的。
這本書對於演算法從基本的入門到實現,循序漸進的介紹,比如裡面就涵蓋了數學建模的常用演算法。
第 1章從數學建模到人工智慧
1.1數學建模1.1.1數學建模與人工智慧1.1.2數學建模中的常見問題1.2人工智慧下的數學1.2.1統計量1.2.2矩陣概念及運算1.2.3概率論與數理統計1.2.4高等數學——導數、微分、不定積分、定積分
第2章 Python快速入門
2.1安裝Python2.1.1Python安裝步驟2.1.2IDE的選擇2.2Python基本操作2.2.1第 一個小程序2.2.2注釋與格式化輸出2.2.3列表、元組、字典2.2.4條件語句與循環語句2.2.5break、continue、pass2.3Python高級操作2.3.1lambda2.3.2map2.3.3filter
第3章Python科學計算庫NumPy
3.1NumPy簡介與安裝3.1.1NumPy簡介3.1.2NumPy安裝3.2基本操作3.2.1初識NumPy3.2.2NumPy數組類型3.2.3NumPy創建數組3.2.4索引與切片3.2.5矩陣合並與分割3.2.6矩陣運算與線性代數3.2.7NumPy的廣播機制3.2.8NumPy統計函數3.2.9NumPy排序、搜索3.2.10NumPy數據的保存
第4章常用科學計算模塊快速入門
4.1Pandas科學計算庫4.1.1初識Pandas4.1.2Pandas基本操作4.2Matplotlib可視化圖庫4.2.1初識Matplotlib4.2.2Matplotlib基本操作4.2.3Matplotlib繪圖案例4.3SciPy科學計算庫4.3.1初識SciPy4.3.2SciPy基本操作4.3.3SciPy圖像處理案例第5章Python網路爬蟲5.1爬蟲基礎5.1.1初識爬蟲5.1.2網路爬蟲的演算法5.2爬蟲入門實戰5.2.1調用API5.2.2爬蟲實戰5.3爬蟲進階—高效率爬蟲5.3.1多進程5.3.2多線程5.3.3協程5.3.4小結
第6章Python數據存儲
6.1關系型資料庫MySQL6.1.1初識MySQL6.1.2Python操作MySQL6.2NoSQL之MongoDB6.2.1初識NoSQL6.2.2Python操作MongoDB6.3本章小結6.3.1資料庫基本理論6.3.2資料庫結合6.3.3結束語
第7章Python數據分析
7.1數據獲取7.1.1從鍵盤獲取數據7.1.2文件的讀取與寫入7.1.3Pandas讀寫操作7.2數據分析案例7.2.1普查數據統計分析案例7.2.2小結
第8章自然語言處理
8.1Jieba分詞基礎8.1.1Jieba中文分詞8.1.2Jieba分詞的3種模式8.1.3標注詞性與添加定義詞8.2關鍵詞提取8.2.1TF-IDF關鍵詞提取8.2.2TextRank關鍵詞提取8.3word2vec介紹8.3.1word2vec基礎原理簡介8.3.2word2vec訓練模型8.3.3基於gensim的word2vec實戰
第9章從回歸分析到演算法基礎
9.1回歸分析簡介9.1.1「回歸」一詞的來源9.1.2回歸與相關9.1.3回歸模型的劃分與應用9.2線性回歸分析實戰9.2.1線性回歸的建立與求解9.2.2Python求解回歸模型案例9.2.3檢驗、預測與控制
第10章 從K-Means聚類看演算法調參
10.1K-Means基本概述10.1.1K-Means簡介10.1.2目標函數10.1.3演算法流程10.1.4演算法優缺點分析10.2K-Means實戰
第11章 從決策樹看演算法升級
11.1決策樹基本簡介11.2經典演算法介紹11.2.1信息熵11.2.2信息增益11.2.3信息增益率11.2.4基尼系數11.2.5小結11.3決策樹實戰11.3.1決策樹回歸11.3.2決策樹的分類
第12章 從樸素貝葉斯看演算法多變193
12.1樸素貝葉斯簡介12.1.1認識樸素貝葉斯12.1.2樸素貝葉斯分類的工作過程12.1.3樸素貝葉斯演算法的優缺點12.23種樸素貝葉斯實戰
第13章 從推薦系統看演算法場景
13.1推薦系統簡介13.1.1推薦系統的發展13.1.2協同過濾13.2基於文本的推薦13.2.1標簽與知識圖譜推薦案例13.2.2小結
第14章 從TensorFlow開啟深度學習之旅
14.1初識TensorFlow14.1.1什麼是TensorFlow14.1.2安裝TensorFlow14.1.3TensorFlow基本概念與原理14.2TensorFlow數據結構14.2.1階14.2.2形狀14.2.3數據類型14.3生成數據十二法14.3.1生成Tensor14.3.2生成序列14.3.3生成隨機數14.4TensorFlow實戰
希望對你有幫助!!!
貴在堅持,自己掌握一些,在工作中不斷打磨,高薪不是夢!!