當前位置:首頁 » 編程語言 » 梯度下降python

梯度下降python

發布時間: 2022-06-18 22:29:10

1. python gradientboostingregressor可以做預測嗎

可以

最近項目中涉及基於Gradient Boosting Regression 演算法擬合時間序列曲線的內容,利用python機器學習包scikit-learn 中的GradientBoostingRegressor完成

因此就學習了下Gradient Boosting演算法,在這里分享下我的理解

Boosting 演算法簡介

Boosting演算法,我理解的就是兩個思想:

1)「三個臭皮匠頂個諸葛亮」,一堆弱分類器的組合就可以成為一個強分類器;

2)「知錯能改,善莫大焉」,不斷地在錯誤中學習,迭代來降低犯錯概率

當然,要理解好Boosting的思想,首先還是從弱學習演算法和強學習演算法來引入:

1)強學習演算法:存在一個多項式時間的學習演算法以識別一組概念,且識別的正確率很高;

2)弱學習演算法:識別一組概念的正確率僅比隨機猜測略好;

Kearns & Valiant證明了弱學習演算法與強學習演算法的等價問題,如果兩者等價,只需找到一個比隨機猜測略好的學習演算法,就可以將其提升為強學習演算法。

那麼是怎麼實現「知錯就改」的呢?

Boosting演算法,通過一系列的迭代來優化分類結果,每迭代一次引入一個弱分類器,來克服現在已經存在的弱分類器組合的shortcomings

在Adaboost演算法中,這個shortcomings的表徵就是權值高的樣本點

而在Gradient Boosting演算法中,這個shortcomings的表徵就是梯度

無論是Adaboost還是Gradient Boosting,都是通過這個shortcomings來告訴學習器怎麼去提升模型,也就是「Boosting」這個名字的由來吧

Adaboost演算法

Adaboost是由Freund 和 Schapire在1997年提出的,在整個訓練集上維護一個分布權值向量W,用賦予權重的訓練集通過弱分類演算法產生分類假設(基學習器)y(x),然後計算錯誤率,用得到的錯誤率去更新分布權值向量w,對錯誤分類的樣本分配更大的權值,正確分類的樣本賦予更小的權值。每次更新後用相同的弱分類演算法產生新的分類假設,這些分類假設的序列構成多分類器。對這些多分類器用加權的方法進行聯合,最後得到決策結果。

其結構如下圖所示:

可以發現,如果要用Gradient Boosting 演算法的話,在sklearn包里調用還是非常方便的,幾行代碼即可完成,大部分的工作應該是在特徵提取上。

感覺目前做數據挖掘的工作,特徵設計是最重要的,據說現在kaggle競賽基本是GBDT的天下,優劣其實還是特徵上,感覺做項目也是,不斷的在研究數據中培養對數據的敏感度。

2. python實現梯度下降

程序學習的過程就是使用梯度下降改變演算法模型參數的過程。
比如說f(x) = aX+b; 這裡面的參數是a和b,使用數據訓練演算法模型來改變參數,達到演算法模型可以實現人臉識別、語音識別的目的。
實現人工智慧的根本是演算法,python是實現演算法的一種語言,因為python語言的易用性和數據處理的友好性,所以現在很多用python語言做機器學習。其它語言比如java、c++等也也可以實現人工智慧相關演算法。下圖是一個神經網路的示意圖。

3. 如何用 python 實現帶隨機梯度下降的線性回歸

線性回歸是一種用於預測真實值的方法。讓人困惑的是,這些需要預測真實值的問題被稱為回歸問題(regression problems)。線性回歸是一種用直線對輸入輸出值進行建模的方法。在超過二維的空間里,這條直線被想像成一個平面或者超平面(hyperplane)。預測即是通過對輸入值的組合對輸出值進行預判。

4. python 梯度下降法 怎麼用

import numpy as np
import matplotlib.pyplot as plt
import random

class dataMinning:
datasets = []
labelsets = []

addressD = '' #Data folder
addressL = '' #Label folder

npDatasets = np.zeros(1)
npLabelsets = np.zeros(1)

cost = []
numIterations = 0
alpha = 0
theta = np.ones(2)
#pCols = 0
#dRows = 0
def __init__(self,addressD,addressL,theta,numIterations,alpha,datasets=None):
if datasets is None:
self.datasets = []
else:
self.datasets = datasets
self.addressD = addressD
self.addressL = addressL
self.theta = theta
self.numIterations = numIterations
self.alpha = alpha

def readFrom(self):
fd = open(self.addressD,'r')
for line in fd:
tmp = line[:-1].split()
self.datasets.append([int(i) for i in tmp])
fd.close()
self.npDatasets = np.array(self.datasets)

fl = open(self.addressL,'r')
for line in fl:
tmp = line[:-1].split()
self.labelsets.append([int(i) for i in tmp])
fl.close()

tm = []
for item in self.labelsets:
tm = tm + item
self.npLabelsets = np.array(tm)

def genData(self,numPoints,bias,variance):
self.genx = np.zeros(shape = (numPoints,2))
self.geny = np.zeros(shape = numPoints)

for i in range(0,numPoints):
self.genx[i][0] = 1
self.genx[i][1] = i
self.geny[i] = (i + bias) + random.uniform(0,1) * variance

def gradientDescent(self):
xTrans = self.genx.transpose() #
i = 0
while i < self.numIterations:
hypothesis = np.dot(self.genx,self.theta)
loss = hypothesis - self.geny
#record the cost
self.cost.append(np.sum(loss ** 2))
#calculate the gradient
gradient = np.dot(xTrans,loss)
#updata, gradientDescent
self.theta = self.theta - self.alpha * gradient
i = i + 1

def show(self):
print 'yes'

if __name__ == "__main__":
c = dataMinning('c:\\city.txt','c:\\st.txt',np.ones(2),100000,0.000005)
c.genData(100,25,10)
c.gradientDescent()
cx = range(len(c.cost))
plt.figure(1)
plt.plot(cx,c.cost)
plt.ylim(0,25000)
plt.figure(2)
plt.plot(c.genx[:,1],c.geny,'b.')
x = np.arange(0,100,0.1)
y = x * c.theta[1] + c.theta[0]
plt.plot(x,y)
plt.margins(0.2)
plt.show()

5. 關於神經網路 需要學習python的哪些知識

多讀文檔 應該是庫 庫也是python基礎編寫的 多讀多看

6. python怎麼實現邏輯回歸的梯度下降和梯度上升法有區別嗎

多數函數解不出導數得0的解析解.梯度下降法是種數值演算法,一般可以用計算機求出很好的近似解

7. 怎樣寫梯度下降法的損失函數 python

python. 如果只是研究演算法,做一個原型,當然python優雅多了. 但個人認為,perl和python都不是做搜索引擎的最合適的選擇吧.

8. 梯度下降使用Python和NumPy問題,怎麼解決

它遵循LMS(Least Mean Square是)准則,該准則是通過使似然函數最大推導得出,即得出的參數使得樣本數據集出現的概率最大。常用的迭代方法有兩種:批量梯度下降法(Batch Gradient Descent)和隨機梯度下降法(Stochastic Gradient Descent)。梯度下降演算法對局部極值敏感,但是對於線性回歸問題只有整體極值,沒有局部極值,所以在這種情況下,演算法總是收斂的。對於隨機梯度下降演算法,其收斂速度要快於批量梯度下降演算法,但是它在最小值附近震盪的幅度較大,所以可能不會收斂於true minimum

9. python怎麼實現邏輯回歸的梯度下降法

import sys

#Training data set
#each element in x represents (x0,x1,x2)
x = [(1,0.,3) , (1,1.,3) ,(1,2.,3), (1,3.,2) , (1,4.,4)]
#y[i] is the output of y = theta0 * x[0] + theta1 * x[1] +theta2 * x[2]
y = [95.364,97.217205,75.195834,60.105519,49.342380]

epsilon = 0.0001
#learning rate
alpha = 0.01
diff = [0,0]
max_itor = 1000
error1 = 0
error0 =0
cnt = 0
m = len(x)

#init the parameters to zero
theta0 = 0
theta1 = 0
theta2 = 0

while True:

cnt = cnt + 1

#calculate the parameters
for i in range(m):

diff[0] = y[i]-( theta0 + theta1 * x[i][1] + theta2 * x[i][2] )

theta0 = theta0 + alpha * diff[0] * x[i][0]
theta1 = theta1 + alpha * diff[0]* x[i][1]
theta2 = theta2 + alpha * diff[0]* x[i][2]

#calculate the cost function
error1 = 0
for lp in range(len(x)):
error1 += ( y[i]-( theta0 + theta1 * x[i][1] + theta2 * x[i][2] ) )**2/2

if abs(error1-error0) < epsilon:
break
else:
error0 = error1

print ' theta0 : %f, theta1 : %f, theta2 : %f, error1 : %f'%(theta0,theta1,theta2,error1)

print 'Done: theta0 : %f, theta1 : %f, theta2 : %f'%(theta0,theta1,theta2)

10. 深度學習 python怎麼入門 知乎

自學深度學習是一個漫長而艱巨的過程。您需要有很強的線性代數和微積分背景,良好的Python編程技能,並扎實掌握數據科學、機器學習和數據工程。即便如此,在你開始將深度學習應用於現實世界的問題,並有可能找到一份深度學習工程師的工作之前,你可能需要一年多的學習和實踐。然而,知道從哪裡開始,對軟化學習曲線有很大幫助。如果我必須重新學習Python的深度學習,我會從Andrew Trask寫的Grokking deep learning開始。大多數關於深度學習的書籍都要求具備機器學習概念和演算法的基本知識。除了基本的數學和編程技能之外,Trask的書不需要任何先決條件就能教你深度學習的基礎知識。這本書不會讓你成為一個深度學習的向導(它也沒有做這樣的聲明),但它會讓你走上一條道路,讓你更容易從更高級的書和課程中學習。用Python構建人工神經元
大多數深度學習書籍都是基於一些流行的Python庫,如TensorFlow、PyTorch或Keras。相比之下,《運用深度學習》(Grokking Deep Learning)通過從零開始、一行一行地構建內容來教你進行深度學習。

《運用深度學習》
你首先要開發一個人工神經元,這是深度學習的最基本元素。查斯克將帶領您了解線性變換的基本知識,這是由人工神經元完成的主要計算。然後用普通的Python代碼實現人工神經元,無需使用任何特殊的庫。
這不是進行深度學習的最有效方式,因為Python有許多庫,它們利用計算機的圖形卡和CPU的並行處理能力來加速計算。但是用普通的Python編寫一切對於學習深度學習的來龍去是非常好的。
在Grokking深度學習中,你的第一個人工神經元只接受一個輸入,將其乘以一個隨機權重,然後做出預測。然後測量預測誤差,並應用梯度下降法在正確的方向上調整神經元的權重。有了單個神經元、單個輸入和單個輸出,理解和實現這個概念變得非常容易。您將逐漸增加模型的復雜性,使用多個輸入維度、預測多個輸出、應用批處理學習、調整學習速率等等。
您將通過逐步添加和修改前面章節中編寫的Python代碼來實現每個新概念,逐步創建用於進行預測、計算錯誤、應用糾正等的函數列表。當您從標量計算轉移到向量計算時,您將從普通的Python操作轉移到Numpy,這是一個特別擅長並行計算的庫,在機器學習和深度學習社區中非常流行。
Python的深度神經網路
有了這些人造神經元的基本構造塊,你就可以開始創建深層神經網路,這基本上就是你將幾層人造神經元疊放在一起時得到的結果。
當您創建深度神經網路時,您將了解激活函數,並應用它們打破堆疊層的線性並創建分類輸出。同樣,您將在Numpy函數的幫助下自己實現所有功能。您還將學習計算梯度和傳播錯誤通過層傳播校正跨不同的神經元。

隨著您越來越熟悉深度學習的基礎知識,您將學習並實現更高級的概念。這本書的特點是一些流行的正規化技術,如早期停止和退出。您還將獲得自己版本的卷積神經網路(CNN)和循環神經網路(RNN)。
在本書結束時,您將把所有內容打包到一個完整的Python深度學習庫中,創建自己的層次結構類、激活函數和神經網路體系結構(在這一部分,您將需要面向對象的編程技能)。如果您已經使用過Keras和PyTorch等其他Python庫,那麼您會發現最終的體系結構非常熟悉。如果您沒有,您將在將來更容易地適應這些庫。
在整本書中,查斯克提醒你熟能生巧;他鼓勵你用心編寫自己的神經網路,而不是復制粘貼任何東西。
代碼庫有點麻煩
並不是所有關於Grokking深度學習的東西都是完美的。在之前的一篇文章中,我說過定義一本好書的主要內容之一就是代碼庫。在這方面,查斯克本可以做得更好。
在GitHub的Grokking深度學習庫中,每一章都有豐富的jupiter Notebook文件。jupiter Notebook是一個學習Python機器學習和深度學習的優秀工具。然而,jupiter的優勢在於將代碼分解為幾個可以獨立執行和測試的小單元。Grokking深度學習的一些筆記本是由非常大的單元格組成的,其中包含大量未注釋的代碼。

這在後面的章節中會變得尤其困難,因為代碼會變得更長更復雜,在筆記本中尋找自己的方法會變得非常乏味。作為一個原則問題,教育材料的代碼應該被分解成小單元格,並在關鍵區域包含注釋。
此外,Trask在Python 2.7中編寫了這些代碼。雖然他已經確保了代碼在Python 3中也能順暢地工作,但它包含了已經被Python開發人員棄用的舊編碼技術(例如使用「for i in range(len(array))」範式在數組上迭代)。
更廣闊的人工智慧圖景
Trask已經完成了一項偉大的工作,它匯集了一本書,既可以為初學者,也可以為有經驗的Python深度學習開發人員填補他們的知識空白。
但正如泰溫·蘭尼斯特(Tywin Lannister)所說(每個工程師都會同意),「每個任務都有一個工具,每個工具都有一個任務。」深度學習並不是一根可以解決所有人工智慧問題的魔杖。事實上,對於許多問題,更簡單的機器學習演算法,如線性回歸和決策樹,將表現得和深度學習一樣好,而對於其他問題,基於規則的技術,如正則表達式和幾個if-else子句,將優於兩者。

關鍵是,你需要一整套工具和技術來解決AI問題。希望Grokking深度學習能夠幫助你開始獲取這些工具。
你要去哪裡?我當然建議選擇一本關於Python深度學習的深度書籍,比如PyTorch的深度學習或Python的深度學習。你還應該加深你對其他機器學習演算法和技術的了解。我最喜歡的兩本書是《動手機器學習》和《Python機器學習》。
你也可以通過瀏覽機器學習和深度學習論壇,如r/MachineLearning和r/deeplearning subreddits,人工智慧和深度學習Facebook組,或通過在Twitter上關注人工智慧研究人員來獲取大量知識。
AI的世界是巨大的,並且在快速擴張,還有很多東西需要學習。如果這是你關於深度學習的第一本書,那麼這是一個神奇旅程的開始。

熱點內容
華為平板怎麼儲存伺服器文件 發布:2025-02-06 12:49:21 瀏覽:479
php查詢結果數組 發布:2025-02-06 12:31:05 瀏覽:714
怎樣把照片壓縮打包 發布:2025-02-06 12:15:19 瀏覽:496
如何編譯java文件 發布:2025-02-06 12:05:58 瀏覽:237
九九乘法編程 發布:2025-02-06 12:05:05 瀏覽:519
台式機忘記開機密碼怎麼辦 發布:2025-02-06 11:58:01 瀏覽:871
android刷新按鈕 發布:2025-02-06 11:57:17 瀏覽:586
存儲過程有輸入參數和輸出參數 發布:2025-02-06 11:55:32 瀏覽:99
成績評選演算法 發布:2025-02-06 11:42:51 瀏覽:997
資料庫測試數據 發布:2025-02-06 11:31:05 瀏覽:824