當前位置:首頁 » 編程語言 » python並發庫

python並發庫

發布時間: 2022-06-09 12:10:10

⑴ 為什麼從事大數據行業,一定要學習python

你好,這主要是因為Python在處理大數據方面有著得天獨厚的優勢。
以後您如果再遇到類似的問題,可以按照下面的思路去解決:
1、發現問題:往往生活在世界中,時時刻刻都處在這各種各樣的矛盾中,當某些矛盾放映到意識中時,個體才發現他是個問題,並要求設法去解決它。這就是發現問題的階段。從問題的解決的階段性看,這是第一階段,是解決問題的前提。
2、分析問題:要解決所發現的問題,必須明確問題的性質,也就是弄清楚有哪些矛盾、哪些矛盾方面,他們之間有什麼關系,以明確所要解決的問題要達到什麼結果,所必須具備的條件、其間的關系和已具有哪些條件,從而找出重要的矛盾、關鍵矛盾之所在。
3、提出假設:在分析問題的基礎上,提出解決問題的假設,即可採用的解決方案,其中包括採取什麼原則和具體的途徑和方法,但所有這些往往不是簡單現成的,而且有多種多樣的可能。但提出假設是問題解決的關鍵階段,正確的假設引導問題順利得到解決,不正確不恰當的假設則使問題的解決走彎路或導向歧途。
4、校驗假設:假設只是提出n種可能解決方案,還不能保證問題必定能獲得解決,所以問題解決的最後一步是對假設進行檢驗。不論哪種檢驗如果未能獲得預期結果,必須重新另提出假設再進行檢驗,直至獲得正確結果,問題才算解決。

⑵ 我為什麼說 Python 是大數據全棧式開發語言

就像只要會JavaScript就可以寫出完整的Web應用,只要會Python,就可以實現一個完整的大數據處理平台。

雲基礎設施

這年頭,不支持雲平台,不支持海量數據,不支持動態伸縮,根本不敢說自己是做大數據的,頂多也就敢跟人說是做商業智能(BI)。

雲平台分為私有雲和公有雲。私有雲平台如日中天的 OpenStack

,就是Python寫的。曾經的追趕者CloudStack,在剛推出時大肆強調自己是Java寫的,比Python有優勢。結果,搬石砸腳,2015年
初,CloudStack的發起人Citrix宣布加入OpenStack基金會,CloudStack眼看著就要壽終正寢。

如果嫌麻煩不想自己搭建私有雲,用公有雲,不論是AWS,GCE,Azure,還是阿里雲,青雲,在都提供了Python SDK,其中GCE只提供Python和JavaScript的SDK,而青雲只提供Python SDK。可見各家雲平台對Python的重視。

提到基礎設施搭建,不得不提Hadoop,在今天,Hadoop因為其MapRece數據處理速度不夠快,已經不再作為大數據處理的首選,但
是HDFS和Yarn——Hadoop的兩個組件——倒是越來越受歡迎。Hadoop的開發語言是Java,沒有官方提供Python支持,不過有很多第
三方庫封裝了Hadoop的API介面(pydoop,hadoopy等等)。

Hadoop MapRece的替代者,是號稱快上100倍的 Spark ,其開發語言是Scala,但是提供了Scala,Java,Python的開發介面,想要討好那麼多用Python開發的數據科學家,不支持Python,真是說不過去。HDFS的替代品,比如GlusterFS, Ceph 等,都是直接提供Python支持。Yarn的替代者, Mesos 是C++實現,除C++外,提供了Java和Python的支持包。

DevOps

DevOps有個中文名字,叫做 開發自運維 。互聯網時代,只有能夠快速試驗新想法,並在第一時間,安全、可靠的交付業務價值,才能保持競爭力。DevOps推崇的自動化構建/測試/部署,以及系統度量等技術實踐,是互聯網時代必不可少的。

自動化構建是因應用而易的,如果是Python應用,因為有setuptools, pip, virtualenv, tox,
flake8等工具的存在,自動化構建非常簡單。而且,因為幾乎所有Linux系統都內置Python解釋器,所以用Python做自動化,不需要系統預
安裝什麼軟體。

自動化測試方面,基於Python的 Robot Framework 企業級應用最喜歡的自動化測試框架,而且和語言無關。Cucumber也有很多支持者,Python對應的Lettuce可以做到完全一樣的事情。 Locust 在自動化性能測試方面也開始受到越來越多的關注。

自動化配置管理工具,老牌的如Chef和Puppet,是Ruby開發,目前仍保持著強勁的勢頭。不過,新生代 Ansible 和 SaltStack ——均為Python開發——因為較前兩者設計更為輕量化,受到越來越多開發這的歡迎,已經開始給前輩們製造了不少的壓力。

在系統監控與度量方面,傳統的Nagios逐漸沒落,新貴如 Sensu 大受好評,雲服務形式的New Relic已經成為創業公司的標配,這些都不是直接通過Python實現的,不過Python要接入這些工具,並不困難。

除了上述這些工具,基於Python,提供完整DevOps功能的PaaS平台,如 Cloudify 和 Deis ,雖未成氣候,但已經得到大量關注。

網路爬蟲

大數據的數據從哪裡來?除了部分企業有能力自己產生大量的數據,大部分時候,是需要靠爬蟲來抓取互聯網數據來做分析。

網路爬蟲是Python的傳統強勢領域,最流行的爬蟲框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析器lxml,等等,都是能夠獨當一面的類庫。

不過,網路爬蟲並不僅僅是打開網頁,解析HTML這么簡單。高效的爬蟲要能夠支持大量靈活的並發操作,常常要能夠同時幾千甚至上萬個網頁同時抓取,傳統的
線程池方式資源浪費比較大,線程數上千之後系統資源基本上就全浪費在線程調度上了。Python由於能夠很好的支持協程( Coroutine )操作,基於此發展起來很多並發庫,如Gevent,Eventlet,還有Celery之類的分布式任務框架。被認為是比AMQP更高效的ZeroMQ也是最早就提供了Python版本。有了對高並發的支持,網路爬蟲才真正可以達到大數據規模。

抓取下來的數據,需要做分詞處理,Python在這方面也不遜色,著名的自然語言處理程序包NLTK,還有專門做中文分詞的Jieba,都是做分詞的利器。

數據處理

萬事俱備,只欠東風。這東風,就是數據處理演算法。從統計理論,到數據挖掘,機器學習,再到最近幾年提出來的深度學習理論,數據科學正處於百花齊放的時代。數據科學家們都用什麼編程

如果是在理論研究領域,R語言也許是最受數據科學家歡迎的,但是R語言的問題也很明顯,因為是統計學家們創建了R語言,所以其語法略顯怪異。而且
R語言要想實現大規模分布式系統,還需要很長一段時間的工程之路要走。所以很多公司使用R語言做原型試驗,演算法確定之後,再翻譯成工程語言。

Python也是數據科學家最喜歡的語言之一。和R語言不同,Python本身就是一門工程性語言,數據科學家用Python實現的演算法,可以直
接用在產品中,這對於大數據初創公司節省成本是非常有幫助的。正式因為數據科學家對Python和R的熱愛,Spark為了討好數據科學家,對這兩種語言
提供了非常好的支持。

Python的數據處理相關類庫非常多。高性能的科學計算類庫NumPy和SciPy,給其他高級演算法打了非常好的基礎,matploglib讓
Python畫圖變得像Matlab一樣簡單。Scikit-learn和Milk實現了很多機器學習演算法,基於這兩個庫實現的 Pylearn2 ,是深度學習領域的重要成員。 Theano 利用GPU加速,實現了高性能數學符號計算和多維矩陣計算。當然,還有 Pandas ,一個在工程領域已經廣泛使用的大數據處理類庫,其DataFrame的設計借鑒自R語言,後來又啟發了Spark項目實現了類似機制。

對了,還有 iPython ,這個工具如此有用,以至於我差點把他當成標准庫而忘了介紹。iPython是一個互動式Python運行環境,能夠實時看到每一段Python代碼的結果。默認情況下,iPython運行在命令行,可以執行 ipython notebook 在網頁中運行。用matplotlib繪制的圖可以直接嵌入式的顯示在iPython Notebook中。

iPython Notebook的筆記本文件可以共享給其他人,這樣其他人就可以在自己的環境中重現你的工作成果;如果對方沒有運行環境,還可以直接轉換成HTML或者PDF。

為什麼是Python

正是因為應用開發工程師、運維工程師、數據科學家都喜歡Python,才使得Python成為大數據系統的全棧式開發語言。

對於開發工程師而言,Python的優雅和簡潔無疑是最大的吸引力,在Python互動式環境中,執行 import this

,讀一讀Python之禪,你就明白Python為什麼如此吸引人。Python社區一直非常有活力,和NodeJS社區軟體包爆炸式增長不
同,Python的軟體包增長速度一直比較穩定,同時軟體包的質量也相對較高。有很多人詬病Python對於空格的要求過於苛刻,但正是因為這個要求,才
使得Python在做大型項目時比其他語言有優勢。OpenStack項目總共超過200萬行代碼,證明了這一點。

對於運維工程師而言,Python的最大優勢在於,幾乎所有Linux發行版都內置了Python解釋器。Shell雖然功能強大,但畢竟語法不夠優雅,寫比較復雜的任務會很痛苦。用Python替代Shell,做一些復雜的任務,對運維人員來說,是一次解放。

對於數據科學家而言,Python簡單又不失強大。和C/C++相比,不用做很多的底層工作,可以快速進行模型驗證;和Java相比,Python語法簡
潔,表達能力強,同樣的工作只需要1/3代碼;和Matlab,Octave相比,Python的工程成熟度更高。不止一個編程大牛表達過,Python
是最適合作為大學計算機科學編程課程使用的語言——MIT的計算機入門課程就是使用的Python——因為Python能夠讓人學到編程最重要的東西——
如何解決問題。

⑶ python gevent 能解決並發狀態嗎

1. gevent.server.StreamServer 會針對每個客戶端連接啟動一個greenlet處理,要注意的是,如果不循環監聽( 阻塞在read ),

每個greenlet會在完成後立即退出,從而導致客戶端退出( 發送FIN_ACK給客戶端 )。這個問題折騰了一晚上,終於弄明白了。坑爹啊。。。

2. 要非常仔細的檢查,greenlet處理的代碼,發現有可能阻塞IO的地方,盡量用gevent提供的庫。

3. 一些第三方庫隱藏了自己的實現( 通常是直接封裝C庫),要使得gevent兼容它們,可以用monkey_patch,但不保證全部管用。

4. 最後最後的一點,gevent的greenlet性能非常高,所以如果是用它作為並發的client端,那麼一定要注意,你的server端處理速度一定要足夠快!
否則你的客戶端代碼會因為服務端的慢速,而失去了greenlet的優勢。

⑷ python高並發怎麼解決

某個時間段內,數據涌來,這就是並發。如果數據量很大,就是高並發

高並發的解決方法:

1、隊列、緩沖區

假設只有一個窗口,陸續湧入食堂的人,排隊打菜是比較好的方式

所以,排隊(隊列)是一種天然解決並發的辦法

排隊就是把人排成 隊列,先進先出,解決了資源使用的問題

排成的隊列,其實就是一個緩沖地帶,就是 緩沖區

假設女生優先,每次都從這個隊伍中優先選出女生出來先打飯,這就是 優先隊列

例如queue模塊的類Queue、LifoQueue、PriorityQueue(小頂堆實現)

2、爭搶

只開一個窗口,有可能沒有秩序,也就是誰擠進去就給誰打飯

擠到窗口的人占據窗口,直到打到飯菜離開

其他人繼續爭搶,會有一個人占據著窗口,可以視為鎖定窗口,窗口就不能為其他人提供服務了。

這是一種鎖機制

誰搶到資源就上鎖,排他性的鎖,其他人只能等候

爭搶也是一種高並發解決方案,但是,這樣可能不好,因為有可能有人很長時間搶不到

3、預處理

如果排長隊的原因,是由於每個人打菜等候時間長,因為要吃的菜沒有,需要現做,沒打著飯不走開,鎖定著窗口

食堂可以提前統計大多數人最愛吃的菜品,將最愛吃的80%的熱門菜,提前做好,保證供應,20%的冷門菜,現做

這樣大多數人,就算鎖定窗口,也很快打到飯菜走了,快速釋放窗口

一種提前載入用戶需要的數據的思路,預處理 思想,緩存常用

更多Python知識,請關註:Python自學網!!

⑸ python現在做高並發伺服器 性能怎麼樣

你要相信一點,現在伺服器的瓶頸主要不在語言,而是磁碟IO,網路IO,業務邏輯等等。
對於幾乎所有現代語言,對C10K問題都能比較好的解決。
HTTP/2、非同步、協程、RESTful等等技術都在一定程度幫我們處理C10K問題,Python世界也有很多開源庫幫我們解決這些問題(換成Java也差不多)。
我公司目前使用的方案有:使用Nginx支持HTTP/2,實現簡單負載均衡,使用Python Tornado + RabbitMQ非同步處理耗時任務,但應用主體還是基於Python FlaskRESTful。
也許使用Java或Go可以提升性能,但我們看中的是Python的工程型、可讀性、可維護性,適合快速迭代開發。

⑹ 為什麼大數據用python

Python 已經成為較受歡迎的程序設計語言之一。自從2004年以後,python的使用率呈線性增長。2011年1月,它被TIOBE編程語言排行榜評為2010年度語言。由於Python語言的簡潔性、易讀性以及可擴展性,在國外用Python做科學計算的研究機構日益增多,一些知名大學已經採用Python來教授程序設計課程。

數據就是資產。大數據工程師是現在十分火熱、高薪的職位。做大數據開發和分析不僅要用到Java,Python也是較重要的語言。

那麼,今天我們就來分析一下,Python之於大數據的意義和作用。

相關推薦:《Python入門教程》

什麼是大數據?

大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

為什麼是python大數據?

從大數據的網路介紹上看到,大數據想要成為信息資產,需要有兩步,一是數據怎麼來,二是數據處理。

數據怎麼來:

在數據怎麼來這個問題上,數據挖掘無疑是很多公司或者個人的優選,畢竟大部分公司或者個人是沒有能力產生這么多數據的,只能是挖掘互聯網上的相關數據。

網路爬蟲是Python的傳統強勢領域,較流行的爬蟲框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析器lxml,等等,都是能夠獨當一面的類庫。

當然,網路爬蟲並不僅僅只是打開網頁,解析HTML怎麼簡單。高效的爬蟲要能夠支持大量靈活的並發操作,常常要能夠同時幾千甚至上萬個網頁同時抓取,傳統的線程池方式資源浪費比較大,線程數上千之後系統資源基本上就全浪費在線程調度上了。

Python由於能夠很好的支持協程(Coroutine)操作,基於此發展起來很多並發庫,如Gevent,Eventlet,還有Celery之類的分布式任務框架。被認為是比AMQP更高效的ZeroMQ也是較早就提供了Python版本。有了對高並發的支持,網路爬蟲才真正可以達到大數據規模。

數據處理:

有了大數據,那麼也需要處理,才能找到適合自己的數據。而在數據處理方向,Python也是數據科學家較喜歡的語言之一,這是因為Python本身就是一門工程性語言,數據科學家用Python實現的演算法,可以直接用在產品中,這對於大數據初創公司節省成本是非常有幫助的。

正是因為這些原因,才讓python語言成為很多公司處理大數據的優選。加之python本身具有簡單、易學、庫多等原因,讓越來越多的人選擇轉行python開發。

⑺ Python 常用的標准庫以及第三方庫有哪些

並發庫: gevent, 將一個個小功能用greenlet實現,然後通過queue, AsyncResult通信來進行解耦,起碼解決我現在遇到的大部分業務流程問題,而且擴展性超好。

⑻ 大數據能用python么

大數據可以使用Python。

為什麼是python大數據?

從大數據的網路介紹上看到,大數據想要成為信息資產,需要有兩步,一是數據怎麼來,二是數據處理。

數據怎麼來?

在數據怎麼來這個問題上,數據挖掘無疑是很多公司或者個人的優選,畢竟大部分公司或者個人是沒有能力產生這么多數據的,只能是挖掘互聯網上的相關數據。

網路爬蟲是Python的傳統強勢領域,較流行的爬蟲框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析器lxml,等等,都是能夠獨當一面的類庫。

當然,網路爬蟲並不僅僅只是打開網頁,解析HTML怎麼簡單。高效的爬蟲要能夠支持大量靈活的並發操作,常常要能夠同時幾千甚至上萬個網頁同時抓取,傳統的線程池方式資源浪費比較大,線程數上千之後系統資源基本上就全浪費在線程調度上了。

Python由於能夠很好的支持協程(Coroutine)操作,基於此發展起來很多並發庫,如Gevent,Eventlet,還有Celery之類的分布式任務框架。被認為是比AMQP更高效的ZeroMQ也是較早就提供了Python版本。有了對高並發的支持,網路爬蟲才真正可以達到大數據規模。

數據處理:

有了大數據,那麼也需要處理,才能找到適合自己的數據。而在數據處理方向,Python也是數據科學家較喜歡的語言之一,這是因為Python本身就是一門工程性語言,數據科學家用Python實現的演算法,可以直接用在產品中,這對於大數據初創公司節省成本是非常有幫助的。

更多Python知識請關注Python視頻教程欄目。

⑼ 如何使用Python實現並發編程

多線程幾乎是每一個程序猿在使用每一種語言時都會首先想到用於解決並發的工具(JS程序員請迴避),使用多線程可以有效的利用CPU資源(Python例外)。然而多線程所帶來的程序的復雜度也不可避免,尤其是對競爭資源的同步問題。

然而在python中由於使用了全局解釋鎖(GIL)的原因,代碼並不能同時在多核上並發的運行,也就是說,Python的多線程不能並發,很多人會發現使用多線程來改進自己的Python代碼後,程序的運行效率卻下降了,這是多麼蛋疼的一件事呀!如果想了解更多細節,推薦閱讀這篇文章。實際上使用多線程的編程模型是很困難的,程序員很容易犯錯,這並不是程序員的錯誤,因為並行思維是反人類的,我們大多數人的思維是串列(精神分裂不討論),而且馮諾依曼設計的計算機架構也是以順序執行為基礎的。所以如果你總是不能把你的多線程程序搞定,恭喜你,你是個思維正常的程序猿:)

Python提供兩組線程的介面,一組是thread模塊,提供基礎的,低等級(Low Level)介面,使用Function作為線程的運行體。還有一組是threading模塊,提供更容易使用的基於對象的介面(類似於Java),可以繼承Thread對象來實現線程,還提供了其它一些線程相關的對象,例如Timer,Lock

使用thread模塊的例子
import thread

def worker():
"""thread worker function"""
print 'Worker'
thread.start_new_thread(worker)
使用threading模塊的例子
import threading
def worker():
"""thread worker function"""
print 'Worker'
t = threading.Thread(target=worker)
t.start()
或者Java Style
import threading

class worker(threading.Thread):
def __init__(self):
pass
def run():
"""thread worker function"""
print 'Worker'

t = worker()
t.start()

⑽ python非同步爬蟲例子

gevent是一個python的並發庫,它為各種並發和網路相關的任務提供了整潔的API。
gevent中用到的主要模式是greenlet,它是以C擴展模塊形式接入Python的輕量級協程。 greenlet全部運行在主程序操作系統進程的內部,但它們被協作式地調度。
實戰
通過用gevent把非同步訪問得到的數據提取出來。
在有道詞典搜索框輸入「hello」按回車。觀察數據請求情況觀察有道的url構建。

熱點內容
書本編譯是什麼意思 發布:2025-02-08 04:45:56 瀏覽:951
淘寶密碼賬號在哪裡看 發布:2025-02-08 04:29:39 瀏覽:536
描繪四季的美文寫一份朗讀腳本 發布:2025-02-08 04:29:21 瀏覽:138
金蝶軟體伺服器是電腦嗎 發布:2025-02-08 04:27:06 瀏覽:973
linux如何搭建c編譯環境 發布:2025-02-08 04:24:49 瀏覽:820
ps腳本批量處理切圖 發布:2025-02-08 04:19:03 瀏覽:57
iisftp命令 發布:2025-02-08 04:04:39 瀏覽:455
安卓為什麼軟體老更新 發布:2025-02-08 03:53:40 瀏覽:735
演算法實際應用 發布:2025-02-08 03:53:07 瀏覽:535
c語言加密文本 發布:2025-02-08 03:47:50 瀏覽:681