python解微分方程
❶ python的scipy里的odeint這個求微分方程的函數怎麼用啊
scipy.integrate.odeint(func,y0,t,args=(),Dfun=None,col_deriv=0,full_output=0,ml=None,mu=None,rtol=None,atol=None,tcrit=None,h0=0.0,hmax=0.0,hmin=0.0,ixpr=0,mxstep=0,mxhnil=0,mxordn=12,mxords=5,printmessg=0) 實際使用中,還是主要使用前三個參數,即微分方程的描寫函數、初值和需要求解函數值對應的的時間點。接收數組形式。這個函數,要求微分方程必須化為標准形式,即dy/dt=f(y,t,)。 fromscipyimportodeint y=odeint(dy/dt=r*y*(1-y/k),y(0)=0.1,t) 對於微分方程全還給老師了,
❷ 如何使用python計算常微分方程
常用形式
odeint(func, y0, t,args,Dfun)
一般這種形式就夠用了。
下面是官方的例子,求解的是
D(D(y1))-t*y1=0
為了方便,採取D=d/dt。如果我們令初值
y1(0) = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)
D(y1)(0) = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)
這個微分方程的解y1=airy(t)。
令D(y1)=y0,就有這個常微分方程組。
D(y0)=t*y1
D(y1)=y0
Python求解該微分方程。
>>> from scipy.integrate import odeint
>>> from scipy.special import gamma, airy
>>> y1_0 = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)
>>> y0_0 = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)
>>> y0 = [y0_0, y1_0]
>>> def func(y, t):
... return [t*y[1],y[0]]
>>> def gradient(y,t):
... return [[0,t],[1,0]]
>>> x = arange(0,4.0, 0.01)
>>> t = x
>>> ychk = airy(x)[0]
>>> y = odeint(func, y0, t)
>>> y2 = odeint(func, y0, t, Dfun=gradient)
>>> print ychk[:36:6]
[ 0.355028 0.339511 0.324068 0.308763 0.293658 0.278806]
>>> print y[:36:6,1]
[ 0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]
>>> print y2[:36:6,1]
[ 0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]
得到的解與精確值相比,誤差相當小。
=======================================================================================================
args是額外的參數。
用法請參看下面的例子。這是一個洛侖茲曲線的求解,並且用matplotlib繪出空間曲線圖。(來自《python科學計算》)
from scipy.integrate import odeint
import numpy as np
def lorenz(w, t, p, r, b):
# 給出位置矢量w,和三個參數p, r, b 計算出
# dx/dt, dy/dt, dz/dt 的值
x, y, z = w
# 直接與lorenz 的計算公式對應
return np.array([p*(y-x), x*(r-z)-y, x*y-b*z])
t = np.arange(0, 30, 0.01) # 創建時間點
# 調用ode 對lorenz 進行求解, 用兩個不同的初始值
track1 = odeint(lorenz, (0.0, 1.00, 0.0), t, args=(10.0, 28.0, 3.0))
track2 = odeint(lorenz, (0.0, 1.01, 0.0), t, args=(10.0, 28.0, 3.0))
# 繪圖
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
ax = Axes3D(fig)
ax.plot(track1[:,0], track1[:,1], track1[:,2])
ax.plot(track2[:,0], track2[:,1], track2[:,2])
plt.show()
===========================================================================
scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0)
計算常微分方程(組)
使用 FORTRAN庫odepack中的lsoda解常微分方程。這個函數一般求解初值問題。
參數:
func : callable(y, t0, ...) 計算y在t0 處的導數。
y0 : 數組 y的初值條件(可以是矢量)
t : 數組 為求出y,這是一個時間點的序列。初值點應該是這個序列的第一個元素。
args : 元組 func的額外參數
Dfun : callable(y, t0, ...) 函數的梯度(Jacobian)。即雅可比多項式。
col_deriv : boolean. True,Dfun定義列向導數(更快),否則Dfun會定義橫排導數
full_output : boolean 可選輸出,如果為True 則返回一個字典,作為第二輸出。
printmessg : boolean 是否列印convergence 消息。
返回: y : array, shape (len(y0), len(t))
數組,包含y值,每一個對應於時間序列中的t。初值y0 在第一排。
infodict : 字典,只有full_output == True 時,才會返回。
字典包含額為的輸出信息。
鍵值:
『hu』 vector of step sizes successfully used for each time step.
『tcur』 vector with the value of t reached for each time step. (will always be at least as large as the input times).
『tolsf』 vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected.
『tsw』 value of t at the time of the last method switch (given for each time step)
『nst』 cumulative number of time steps
『nfe』 cumulative number of function evaluations for each time step
『nje』 cumulative number of jacobian evaluations for each time step
『nqu』 a vector of method orders for each successful step.
『imxer』index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise.
『lenrw』 the length of the double work array required.
『leniw』 the length of integer work array required.
『mused』a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff)
其他參數,官方網站和文檔都沒有明確說明。相關的資料,暫時也找不到。
❸ 用matlab或maple或者python解一個二階常微分方程-數值解(用差分或者有限元方法)(非直接ode45類型的)
我用 Maple 2015 做了1個,如下:
可以在 Maple 中運行,滑動兩個滑動條,得到相應的數值解的繪圖,其中原式中的 n=兩個滑動條之和。Maple文件如果需要可以郵箱發給你,應該可以用 Maple 17 及以上版本打開。
如果沒有 Maple,可以用以下鏈接試試在線的:
http://202.121.241.38/maplenet/worksheet/uploads/dsolve&plot.mw
❹ python 的scipy 里的 odeint 這個求微分方程的函數怎麼用啊
scipy中提供了用於解常微分方程的函數odeint(),完整的調用形式如下:
scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0,hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0)
實際使用中,還是主要使用前三個參數,即微分方程的描寫函數、初值和需要求解函數值對應的的時間點。接收數組形式。這個函數,要求微分方程必須化為標准形式,即dy/dt=f(y,t,)。
from scipy import odeint
y = odeint(dy/dt=r*y*(1-y/k) ,y(0)=0.1,t)
對於微分方程全還給老師了,
http://hyry.dip.jp:8000/pydoc/index.html
這個地址有很多關於python做科學計算的文檔,你可以去查查
❺ 用python如何得到一個方程的多個解
方法/步驟
用Python解數學方程,需要用到Python的一個庫——SymPy庫。
SymPy是符號數學的Python庫,它的目標是成為一個全功能的計算機代數系統,同時保持代碼簡潔、易於理解和擴展。
如果你的電腦上還沒有安裝sympy庫,那就趕緊安裝吧,安裝命令:
pip3 install sympy
❻ 求助關於一個用Python求微分方程並算出極值
所說所有的變數都是對象。 對象在python里,其實是一個指針,指向一個數據結構,數據結構里有屬性,有方法。對象通常就是指變數。從面向對象OO的概念來講,對象是類的一個實例。在python里很簡單,對象就是變數。class A:myname="class a"上面就是一個類。不是對象a=A()這里變數a就是一個對象。它有一個屬性(類屬性),myname,你可以顯示出來print a.myname所以,你看到一個變數後面跟點一個小數點。那麼小數點後面
❼ dy/dx=E(y)/x,怎麼使用使用python的scipy庫中的odeint求解y和x的關系
odeint實際是用來解微分方程組的。
令z = y』,可以把方程化為方程組:
y' = z
z' = -b*y-a*z
將y, z分別替換為y[0], y[1]就得到了程序里的return array([ y[1], a*y[0]+b*y[1] ]), 這個程序把a,b前面的符號放到參數賦值里了。
搞明白上面的就能用來解方程了,下面畫圖部分無關緊要
hold('on')是用來保持之前畫的曲線
legend() 顯示曲線的標簽
❽ python求微分方程組的數值解曲線01
如圖所示:
❾ 如何系統地自學 Python
是否非常想學好 Python,一方面被瑣事糾纏,一直沒能動手,另一方面,擔心學習成本太高,心裡默默敲著退堂鼓?
幸運的是,Python 是一門初學者友好的編程語言,想要完全掌握它,你不必花上太多的時間和精力。
Python 的設計哲學之一就是簡單易學,體現在兩個方面:
語法簡潔明了:相對 Ruby 和 Perl,它的語法特性不多不少,大多數都很簡單直接,不玩兒玄學。
切入點很多:Python 可以讓你可以做很多事情,科學計算和數據分析、爬蟲、Web 網站、游戲、命令行實用工具等等等等,總有一個是你感興趣並且願意投入時間的。
- 用一種方法,最好是只有一種方法來做一件事。
廢話不多說,學會一門語言的捷徑只有一個: Getting Started
¶ 起步階段
任何一種編程語言都包含兩個部分:硬知識和軟知識,起步階段的主要任務是掌握硬知識。
硬知識
「硬知識」指的是編程語言的語法、演算法和數據結構、編程範式等,例如:變數和類型、循環語句、分支、函數、類。這部分知識也是具有普適性的,看上去是掌握了一種語法,實際是建立了一種思維。例如:讓一個 Java 程序員去學習 Python,他可以很快的將 Java 中的學到的面向對象的知識 map 到 Python 中來,因此能夠快速掌握 Python 中面向對象的特性。
如果你是剛開始學習編程的新手,一本可靠的語法書是非常重要的。它看上去可能非常枯燥乏味,但對於建立穩固的編程思維是必不可少。
下面列出了一些適合初學者入門的教學材料:
廖雪峰的 Python 教程 Python 中文教程的翹楚,專為剛剛步入程序世界的小白打造。
笨方法學 Python 這本書在講解 Python 的語法成分時,還附帶大量可實踐的例子,非常適合快速起步。
The Hitchhiker』s Guide to Python! 這本指南著重於 Python 的最佳實踐,不管你是 Python 專家還是新手,都能獲得極大的幫助。
Python 的哲學:
學習也是一樣,雖然推薦了多種學習資料,但實際學習的時候,最好只選擇其中的一個,堅持看完。
必要的時候,可能需要閱讀講解數據結構和演算法的書,這些知識對於理解和使用 Python 中的對象模型有著很大的幫助。
軟知識
「軟知識」則是特定語言環境下的語法技巧、類庫的使用、IDE的選擇等等。這一部分,即使完全不了解不會使用,也不會妨礙你去編程,只不過寫出的程序,看上去顯得「傻」了些。
對這些知識的學習,取決於你嘗試解決的問題的領域和深度。對初學者而言,起步階段極易走火,或者在選擇 Python 版本時徘徊不決,一會兒看 2.7 一會兒又轉到 3.0,或者徜徉在類庫的大海中無法自拔,Scrapy,Numpy,Django 什麼都要試試,或者參與編輯器聖戰、大括弧縮進探究、操作系統辯論賽等無意義活動,或者整天跪舔語法糖,老想著怎麼一行代碼把所有的事情做完,或者去構想聖潔的性能安全通用性健壯性全部滿分的解決方案。
很多「大牛」都會告誡初學者,用這個用那個,少走彎路,這樣反而把初學者推向了真正的彎路。
還不如告訴初學者,學習本來就是個需要你去走彎路出 Bug,只能腳踏實地,沒有奇跡只有狗屎的過程。
選擇一個方向先走下去,哪怕臟丑差,走不動了再看看有沒有更好的解決途徑。
自己走了彎路,你才知道這么做的好處,才能理解為什麼人們可以手寫狀態機去匹配卻偏要發明正則表達式,為什麼面向過程可以解決卻偏要面向對象,為什麼我可以操縱每一根指針卻偏要自動管理內存,為什麼我可以嵌套回調卻偏要用 Promise...
更重要的是,你會明白,高層次的解決方法都是對低層次的封裝,並不是任何情況下都是最有效最合適的。
技術涌進就像波浪一樣,那些陳舊的封存已久的技術,消退了遲早還會涌回的。就像現在移動端應用、手游和 HTML5 的火熱,某些方面不正在重演過去 PC 的那些歷史么?
因此,不要擔心自己走錯路誤了終身,堅持並保持進步才是正道。
起步階段的核心任務是掌握硬知識,軟知識做適當了解,有了穩固的根,粗壯的枝幹,才能長出濃密的葉子,結出甜美的果實。
¶ 發展階段
完成了基礎知識的學習,必定會感到一陣空虛,懷疑這些語法知識是不是真的有用。
沒錯,你的懷疑是非常正確的。要讓 Python 發揮出它的價值,當然不能停留在語法層面。
發展階段的核心任務,就是「跳出 Python,擁抱世界」。
在你面前會有多個分支:科學計算和數據分析、爬蟲、Web 網站、游戲、命令行實用工具等等等等,這些都不是僅僅知道 Python 語法就能解決的問題。
拿爬蟲舉例,如果你對計算機網路,HTTP 協議,HTML,文本編碼,JSON 一無所知,你能做好這部分的工作么?而你在起步階段的基礎知識也同樣重要,如果你連循環遞歸怎麼寫都還要查文檔,連 BFS 都不知道怎麼實現,這就像工匠做石凳每次起錘都要思考錘子怎麼使用一樣,非常低效。
在這個階段,不可避免要接觸大量類庫,閱讀大量書籍的。
類庫方面
「Awesome Python 項目」:vinta/awesome-python · GitHub
這里列出了你在嘗試解決各種實際問題時,Python 社區已有的工具型類庫,如下圖所示:
vinta/awesome-python
你可以按照實際需求,尋找你需要的類庫。
至於相關類庫如何使用,必須掌握的技能便是閱讀文檔。由於開源社區大多數文檔都是英文寫成的,所以,英語不好的同學,需要惡補下。
書籍方面
這里我只列出一些我覺得比較有一些幫助的書籍,詳細的請看豆瓣的書評:
科學和數據分析:
❖「集體智慧編程」:集體智慧編程 (豆瓣)
❖「數學之美」:數學之美 (豆瓣)
❖「統計學習方法」:統計學習方法 (豆瓣)
❖「Pattern Recognition And Machine Learning」:Pattern Recognition And Machine Learning (豆瓣)
❖「數據科學實戰」:數據科學實戰 (豆瓣)
❖「數據檢索導論」:信息檢索導論 (豆瓣)
爬蟲:
❖「HTTP 權威指南」:HTTP權威指南 (豆瓣)
Web 網站:
❖「HTML & CSS 設計與構建網站」:HTML & CSS設計與構建網站 (豆瓣)
...
列到這里已經不需要繼續了。
聰明的你一定會發現上面的大部分書籍,並不是講 Python 的書,而更多的是專業知識。
事實上,這里所謂「跳出 Python,擁抱世界」,其實是發現 Python 和專業知識相結合,能夠解決很多實際問題。這個階段能走到什麼程度,更多的取決於自己的專業知識。
¶ 深入階段
這個階段的你,對 Python 幾乎了如指掌,那麼你一定知道 Python 是用 C 語言實現的。
可是 Python 對象的「動態特徵」是怎麼用相對底層,連自動內存管理都沒有的C語言實現的呢?這時候就不能停留在表面了,勇敢的拆開 Python 的黑盒子,深入到語言的內部,去看它的歷史,讀它的源碼,才能真正理解它的設計思路。
這里推薦一本書:
「Python 源碼剖析」:Python源碼剖析 (豆瓣)
這本書把 Python 源碼中最核心的部分,給出了詳細的闡釋,不過閱讀此書需要對 C 語言內存模型和指針有著很好的理解。
另外,Python 本身是一門雜糅多種範式的動態語言,也就是說,相對於 C 的過程式、 Haskell 等的函數式、Java 基於類的面向對象而言,它都不夠純粹。換而言之,編程語言的「道學」,在 Python 中只能有限的體悟。學習某種編程範式時,從那些面向這種範式更加純粹的語言出發,才能有更深刻的理解,也能了解到 Python 語言的根源。
這里推薦一門公開課
「編程範式」:斯坦福大學公開課:編程範式
講師高屋建瓴,從各種編程範式的代表語言出發,給出了每種編程範式最核心的思想。
值得一提的是,這門課程對C語言有非常深入的講解,例如C語言的范型和內存管理。這些知識,對閱讀 Python 源碼也有大有幫助。
Python 的許多最佳實踐都隱藏在那些眾所周知的框架和類庫中,例如 Django、Tornado 等等。在它們的源代碼中淘金,也是個不錯的選擇。
¶ 最後的話
每個人學編程的道路都是不一樣的,其實大都殊途同歸,沒有迷路的人只有不能堅持的人!
希望想學 Python 想學編程的同學,不要猶豫了,看完這篇文章,
Just Getting Started !!!
❿ python里怎麼樣求解微分方程
有很多大學生問我,學習python有什麼用呢?我說:你至少可以用來解微分方程,如下面的例子,就是解決微分方程:
y"+a*y'+b*y=0
代碼如下:
[python]view plain
#y"+a*y'+b*y=0
fromscipy.integrateimportodeint
frompylabimport*
defderiv(y,t):#返回值是y和y的導數組成的數組
a=-2.0
b=-0.1
returnarray([y[1],a*y[0]+b*y[1]])
time=linspace(0.0,50.0,1000)
yinit=array([0.0005,0.2])#初值
y=odeint(deriv,yinit,time)
figure()
plot(time,y[:,0],label='y')#y[:,0]即返回值的第一列,是y的值。label是為了顯示legend用的。
plot(time,y[:,1],label="y'")#y[:,1]即返回值的第二列,是y』的值
xlabel('t')
ylabel('y')
legend()
show()
輸出結果如下: