優化sql查詢速度
化總結如下:
1、主鍵就是聚集索引
2、只要建立索引就能顯著提高查詢速度
3、把所有需要提高查詢速度的欄位都加進聚集索引,以提高查詢速度
注意事項
1. 不要索引常用的小型表
2. 不要把社會保障號碼(SSN)或身份證號碼(ID)選作鍵
3. 不要用用戶的鍵
4. 不要索引 memo/notes 欄位和不要索引大型文本欄位(許多字元)
5. 使用系統生成的主鍵
2. 開發中,SQL語句優化有哪些方法
看你資料庫類型和框架是否支持。
一般開發中遇到慢SQL存在3個問題(索引健全的情況下)。
數據量多導致總行數慢,因為數據在不歸檔、遷移、轉總賬的情況下會不斷積壓。許可權越高看見的數據量就越大,數據量越大總行數就越高。一般框架是以分頁的SQL為基礎計算總行數的。這樣就會導致掃描行數高物理讀高查詢速度慢。優化方案就是總行數進行狀態歸檔,以歸檔+實時的方式展現出來
連表超過多,部分數據表是單獨的,但是不同部門的數據又有關聯性,領導要看全生命周期或者流程數據的情況下必須多表相連。這樣由於N個明細表導致笛卡兒積先不說,邏輯復雜連表多會消耗CPU,哪怕你查詢能500毫秒內顯示但是如果多人同時查就讓CPU超100%甚至做成鎖等待等堵塞。這個情況就是要用類似「雲計算」的分布式計算。通過觸發器、存儲過程等規定時間內吧業務表數據計算好並寫到展示表中,直接通過展示表進行關聯,這樣鎖表也於業務表無關,關聯表也能變少達到減少CPU消耗的目的。
iops與cpu佔比高導致資料庫癱瘓。第2點看出如果CPU高資料庫全SQL都會慢,IOPS也一樣。SQL慢會導致事務中的查詢慢,解放事務變慢了其他查詢就會鎖等待狀態變成堵塞。所以遇到大規模的查詢是否先查主鍵然後通過游標一個一個計算再進臨時表。這個是消耗時間和內存換CPU和IOPS的一個例子。反正伺服器資源最高怎樣開發應該是了解的,如何管制資源之間的平衡這個很重要。
舉個例子,部分MYSQL框架喜歡一次性把資料庫都導出來,然後減少子查詢,這個演算法針對有效的基礎數據這樣是可行的。針對業務數據應該沒人會用,但是基礎數據中也可能會存在海量的情況,比如坐標軌跡、省市區、電話號碼歸屬等。如果無腦應用這個框架會導致查詢起來很慢。
3. SQL常見優化Sql查詢性能的方法有哪些
SQL常見優化Sql查詢性能的方法有哪些
可以通過如下方法來優化查詢 1、把數據、日誌、索引放到不同的I/O設備上,增加讀取速度,以前可以將Tempdb應放在RAID0上,SQL2000不在支持。數據量(尺寸)越大,提高I/O越重要. 2、縱向、橫向分割表,減少表的尺寸(sp_spaceuse) 3、升級硬體 4、根據查詢條件,建立索引,優化索引、優化訪問方式,限制結果集的數據量。注意填充因子要適當(最好是使用默認值0)。索引應該盡量小,使用位元組數小的列建索引好(參照索引的創建),不要對有限的幾個值的欄位建單一索引如性別欄位
4. sql語句性能如何優化
如何加快查詢速度?
1、升級硬體
2、根據查詢條件,建立索引,優化索引、優化訪問方式,限制結果集的數據量。
3、擴大伺服器的內存
4、增加伺服器CPU個數
5、對於大的資料庫不要設置資料庫自動增長,它會降低伺服器的性能
6、在查詢Select語句中用Where字句限制返回的行數,避免表掃描,如果返回不必要的數據,浪費了伺服器的I/O資源,加重了網路的負擔降低性能。如果表很大,在表掃描的期間將表鎖住,禁止其他的聯接訪問表,後果嚴重。
7、查詢時不要返回不需要的行、列
8、用select
top
100
/
10
Percent
來限制用戶返回的行數或者SET
ROWCOUNT來限制操作的行
9、在IN後面值的列表中,將出現最頻繁的值放在最前面,出現得最少的放在最後面,減少判斷的次數
10、一般在GROUP
BY
個HAVING字句之前就能剔除多餘的行,所以盡量不要用它們來做剔除行的工作。他們的執行順序應該如下最優:
select的Where字句選擇所有合適的行,Group
By用來分組個統計行,Having字句用來剔除多餘的分組。這樣Group
By
個Having的開銷小,查詢快.對於大的數據行進行分組和Having十分消耗資源。如果Group
BY的目的不包括計算,只是分組,那麼用Distinct更快
11、一次更新多條記錄比分多次更新每次一條快,就是說批處理好
5. 如何進行SQL性能優化
這里分享下mysql優化的幾種方法。
1、首先在打開的軟體中,需要分別為每一個表創建 InnoDB FILE的文件。
6. 如何提高SQL查詢速度
索引對資料庫檢索優化時很重要的一個概念聚集索引在SQL中是唯一的也就是說聚集索引時一個很寶貴的資源但是SQL SERVER在自動分配索引的時候默認總是將ID主鍵分配為聚集索引其實是很浪費的通常情況下你可以通過語句創建聚集索引到你使用率最高的條件欄位上面去,當然你必須先分配聚集索引然後再去分配主鍵,否則主鍵創建時就會自動佔用聚集索引然後非聚集索引不能設置過濫,設置過濫會導致目錄增多最後反而導致查詢緩慢優化不是純粹理論上的東西,理論教會你怎麼去使用嘗試才能獲取經驗
7. 如何提高sql資料庫的查詢速度
這是一個典型問題,在網上搜一下就行了。給你搜了一個粘過來看看
1.索引優化
建索引的選擇必須結合SQL查詢、修改、刪除語句的需要,一般的說法是在WHERE里經常出現的欄位建索引。如果在WHERE經常是幾個欄位一起出現而且是用AND連接的,那就應該建這幾個欄位一起的聯合索引,而且次序也需要考慮,一般是最常出現的放前面,重復率低的放前面。
SQL Server提供了一種簡化並自動維護資料庫的工具。這個稱之為資料庫維護計劃向導(Database Maintenance Plan Wizard ,DMPW)的工具也包括了對索引的優化。如果你運行這個向導,你會看到關於資料庫中關於索引的統計量,這些統計量作為日誌工作並定時更新,這樣就減輕了手工重建索引或者DBCC INDEXDEFRAG所帶來的工作量。如果你不想自動定期刷新索引統計量,你還可以在DMPW中選擇重新組織數據和數據頁,這將停止舊有索引並按特定的填充因子重建索引。
2.
改善硬體(雙CPU,Raid 5,增加內存)
tempdb這個臨時資料庫,它對性能的影響較大。tempdb和其他資料庫一樣可以增大,可以縮小。當數據文件需要增長的時候,通常不能保持剩餘部分的連續性。這時文件就會產生碎片,這種碎片會造成性能下降。這種碎片屬於外來性碎片。要阻止在tempdb中產生外來性碎片,必須保證有足夠的硬碟空間。一般將tempdb的容量放到平均使用容量。而你也應該允許tempdb自動增長,比如你有個一個超大的join操作,它建立了一個超過tempdb容量的時候,該查詢將失敗。你還要設置一個合理的單位增長量。因為如果你設得太小,將會產生許多外來性碎片,反而會佔用更多資源。sqlserver調優最有效的做法之一,就是把爭奪資源的操作獨立出去。tempdb就是一個需要獨立出去的部分而tempdb和其他系統庫一樣是公用的,是存取最可能頻繁的庫,所有處理臨時表、子查詢、GROUP BY、排序、DISTINCT、連接等等。它最適合放到一個具有快速讀寫能力的設備上。比如RAID0卷或RAID0+1卷上。
查詢語句一定要使用存儲過程;
3、查詢盡量使用TOP子句
4.將表按一定的約束分成子表,(如按分類)創建約束,在用Like 時,先用分類 and like , 應該可能解決問題. 而且效果立稈見影!(你要確定SQL會認識你建的分區視圖).我一個表有上百萬的記錄(700兆),用分區視圖後,查詢速度基本跟10萬行一樣.
如果還是太慢,還可以考濾分布式分區視圖!這總可以解決問題了吧!
關鍵在於你能否把大表按某種約束分解成子表.
8. 查詢特別慢 如何優化SQL
思路:
首先,要確定使用的是什麼數據,
若是MSSQL,那麼需要看一下查詢計劃,然後逐一解決慢的問題;
若是Access,那麼就要看錶的索引創建是否合適,另外Access還有一個弊病,就是資料庫大於10MB後,速度和性能將極大的下降
9. 如何解決SQL查詢速度太慢
1. 執行計劃中明明有使用到索引,為什麼執行還是這么慢?
2. 執行計劃中顯示掃描行數為 644,為什麼 slow log 中顯示 100 多萬行?
a. 我們先看執行計劃,選擇的索引 「INDX_BIOM_ELOCK_TASK3(TASK_ID)」。結合 sql 來看,因為有 "ORDER BY TASK_ID DESC" 子句,排序通常很慢,如果使用了文件排序性能會更差,優化器選擇這個索引避免了排序。
那為什麼不選 possible_keys:INDX_BIOM_ELOCK_TASK 呢?原因也很簡單,TASK_DATE 欄位區分度太低了,走這個索引需要掃描的行數很大,而且還要進行額外的排序,優化器綜合判斷代價更大,所以就不選這個索引了。不過如果我們強制選擇這個索引(用 force index 語法),會看到 SQL 執行速度更快少於 10s,那是因為優化器基於代價的原則並不等價於執行速度的快慢;
b. 再看執行計劃中的 type:index,"index" 代表 「全索引掃描」,其實和全表掃描差不多,只是掃描的時候是按照索引次序進行而不是行,主要優點就是避免了排序,但是開銷仍然非常大。
Extra:Using where 也意味著掃描完索引後還需要回表進行篩選。一般來說,得保證 type 至少達到 range 級別,最好能達到 ref。
在第 2 點中提到的「慢日誌記錄Rows_examined: 1161559,看起來是全表掃描」,這里更正為「全索引掃描」,掃描行數確實等於表的行數;
c. 關於執行計劃中:「rows:644」,其實這個只是估算值,並不準確,我們分析慢 SQL 時判斷准確的掃描行數應該以 slow log 中的 Rows_examined 為准。
4. 優化建議:添加組合索引 IDX_REL_DEVID_TASK_ID(REL_DEVID,TASK_ID)
優化過程:
TASK_DATE 欄位存在索引,但是選擇度很低,優化器不會走這個索引,建議後續可以刪除這個索引:
select count(*),count(distinct TASK_DATE) from T_BIOMA_ELOCK_TASK;+------------+---------------------------+| count(*) | count(distinct TASK_DATE) |+------------+---------------------------+| 1161559 | 223 |+------------+---------------------------+
在這個 sql 中 REL_DEVID 欄位從命名上看選擇度較高,通過下面 sql 來檢驗確實如此:
select count(*),count(distinct REL_DEVID) from T_BIOMA_ELOCK_TASK;+----------+---------------------------+| count(*) | count(distinct REL_DEVID) |+----------+---------------------------+| 1161559 | 62235 |+----------+---------------------------+
由於有排序,所以得把 task_id 也加入到新建的索引中,REL_DEVID,task_id 組合選擇度 100%:
select count(*),count(distinct REL_DEVID,task_id) from T_BIOMA_ELOCK_TASK;+----------+-----------------------------------+| count(*) | count(distinct REL_DEVID,task_id) |+----------+-----------------------------------+| 1161559 | 1161559 |+----------+-----------------------------------+
在測試環境添加 REL_DEVID,TASK_ID 組合索引,測試 sql 性能:alter table T_BIOMA_ELOCK_TASK add index idx_REL_DEVID_TASK_ID(REL_DEVID,TASK_ID);
添加索引後執行計劃:
這里還要注意一點「隱式轉換」:REL_DEVID 欄位數據類型為 varchar,需要在 sql 中加引號:AND T.REL_DEVID = 000000025xxx >> AND T.REL_DEVID = '000000025xxx'
執行時間從 10s+ 降到 毫秒級別:
1 row in set (0.00 sec)
結論
一個典型的 order by 查詢的優化,添加更合適的索引可以避免性能問題:執行計劃使用索引並不意味著就能執行快。
10. 怎麼樣提高千萬級SQL資料庫查詢速度
1.對查詢進行優化,應盡量避免全表掃描,首先應考慮在 where 及 order by 涉及的列上建立索引。
2.應盡量避免在 where 子句中對欄位進行 null 值判斷,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num is null
可以在num上設置默認值0,確保表中num列沒有null值,然後這樣查詢:
select id from t where num=0
3.應盡量避免在 where 子句中使用!=或<>操作符,否則將引擎放棄使用索引而進行全表掃描。
4.應盡量避免在 where 子句中使用 or 來連接條件,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num=10 or num=20
可以這樣查詢:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否則會導致全表掃描,如:
select id from t where num in(1,2,3)
對於連續的數值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查詢也將導致全表掃描:
select id from t where name like '%abc%'
若要提高效率,可以考慮全文檢索。