python爬取網頁的代碼
㈠ python怎麼爬取網頁源代碼
#!/usr/bin/env python3
#-*- coding=utf-8 -*-
import urllib3
if __name__ == '__main__':
http=urllib3.PoolManager()
r=http.request('GET','IP')
print(r.data.decode("gbk"))
可以正常抓取。需要安裝urllib3,py版本3.43
㈡ 如何在scrapy框架下,用python實現爬蟲自動跳轉頁面來抓去網頁內容
Scrapy是一個用Python寫的Crawler Framework,簡單輕巧,並且非常方便。Scrapy使用Twisted這個非同步網路庫來處理網路通信,架構清晰,並且包含了各種中間件介面,可以靈活地完成各種需求。Scrapy整體架構如下圖所示:
根據架構圖介紹一下Scrapy中的各大組件及其功能:
Scrapy引擎(Engine):負責控制數據流在系統的所有組建中流動,並在相應動作發生觸發事件。
調度器(Scheler):從引擎接收Request並將它們入隊,以便之後引擎請求request時提供給引擎。
下載器(Downloader):負責獲取頁面數據並提供給引擎,而後提供給Spider。
Spider:Scrapy用戶編寫用於分析Response並提取Item(即獲取到的Item)或額外跟進的URL的類。每個Spider負責處理一個特定(或一些網站)。
Item Pipeline:負責處理被Spider提取出來的Item。典型的處理有清理驗證及持久化(例如存儲到資料庫中,這部分後面會介紹存儲到Mysql中,其他的資料庫類似)。
下載器中間件(Downloader middlewares):是在引擎即下載器之間的特定鉤子(special hook),處理Downloader傳遞給引擎的Response。其提供了一個簡便的機制,通過插入自定義代碼來擴展Scrapy功能(後面會介紹配置一些中間並激活,用以應對反爬蟲)。
Spider中間件(Spider middlewares):是在引擎及Spider之間的特定鉤子(special hook),處理Spider的輸入(response)和輸出(Items即Requests)。其提供了一個簡便的機制,通過插入自定義的代碼來擴展Scrapy功能。
㈢ Python怎樣抓取當前頁面HTML內容
Python用做數據處理還是相當不錯的,如果你想要做爬蟲,Python是很好的選擇,它有很多已經寫好的類包,只要調用,即可完成很多復雜的功能,此文中所有的功能都是基於BeautifulSoup這個包。
1 Pyhton獲取網頁的內容(也就是源代碼)
page = urllib2.urlopen(url)
contents = page.read()
#獲得了整個網頁的內容也就是源代碼 print(contents)
url代表網址,contents代表網址所對應的源代碼,urllib2是需要用到的包,以上三句代碼就能獲得網頁的整個源代碼
2 獲取網頁中想要的內容(先要獲得網頁源代碼,再分析網頁源代碼,找所對應的標簽,然後提取出標簽中的內容)
㈣ python 怎樣爬去網頁的內容
用python爬取網頁信息的話,需要學習幾個模塊,urllib,urllib2,urllib3,requests,httplib等等模塊,還要學習re模塊(也就是正則表達式)。根據不同的場景使用不同的模塊來高效快速的解決問題。
最開始我建議你還是從最簡單的urllib模塊學起,比如爬新浪首頁(聲明:本代碼只做學術研究,絕無攻擊用意):
這樣就把新浪首頁的源代碼爬取到了,這是整個網頁信息,如果你要提取你覺得有用的信息得學會使用字元串方法或者正則表達式了。
平時多看看網上的文章和教程,很快就能學會的。
補充一點:以上使用的環境是python2,在python3中,已經把urllib,urllib2,urllib3整合為一個包,而不再有這幾個單詞為名字的模塊。
㈤ Python如何實現爬取需要登錄的網站代碼實例
final String url = "jdbc:oracle:thin:@localhost:1521:ORCL";
final String user = "store";
final String password = "store_password";
Class.forName("oracle.jdbc.driver.OracleDriver");
Connection con = DriverManager.getConnection(url, user, password);
return con;
}
㈥ python怎樣抓取網頁中的文字和數字數據
通過xpath路徑來定位到要提取的元素,在路徑後面加上/text()可以提取該元素的文本,如果是要提取屬性值,在路徑後面加上/@屬性名就可以。如果要只採集數字或者文字,可以使用正則來實現。比如數字的正字表達式:[0-9]+。希望可以幫到題主
㈦ 如何用Python requests 爬取網頁所有文字
您可以用requests庫的get方法,以請求的網址為參數,獲取網頁所有html代碼,再訪問結果是text屬性即可。
㈧ python爬蟲怎麼獲取動態的網頁源碼
一個月前實習導師布置任務說通過網路爬蟲獲取深圳市氣象局發布的降雨數據,網頁如下:
心想,爬蟲不太難的,當年跟zjb爬煎蛋網無(mei)聊(zi)圖的時候,多麼清高。由於接受任務後的一個月考試加作業一大堆,導師也不催,自己也不急。
但是,導師等我一個月都得讓我來寫意味著這東西得有多難吧。。。今天打開一看的確是這樣。網站是基於Ajax寫的,數據動態獲取,所以無法通過下載源代碼然後解析獲得。
從某不良少年寫的抓取淘寶mm的例子中收到啟發,對於這樣的情況,一般可以同構自己搭建瀏覽器實現。phantomJs,CasperJS都是不錯的選擇。
導師的要求是獲取過去一年內深圳每個區每個站點每小時的降雨量,執行該操作需要通過如上圖中的歷史查詢實現,即通過一個時間來查詢,而這個時間存放在一個hidden類型的input標簽里,當然可以通過js語句將其改為text類型,然後執行send_keys之類的操作。然而,我失敗了。時間可以修改設置,可是結果如下圖。
為此,僅抓取實時數據。選取python的selenium,模擬搭建瀏覽器,模擬人為的點擊等操作實現數據生成和獲取。selenium的一大優點就是能獲取網頁渲染後的源代碼,即執行操作後的源代碼。普通的通過 url解析網頁的方式只能獲取給定的數據,不能實現與用戶之間的交互。selenium通過獲取渲染後的網頁源碼,並通過豐富的查找工具,個人認為最好用的就是find_element_by_xpath("xxx"),通過該方式查找到元素後可執行點擊、輸入等事件,進而向伺服器發出請求,獲取所需的數據。
[python]view plain
#coding=utf-8
fromtestStringimport*
fromseleniumimportwebdriver
importstring
importos
fromselenium.webdriver.common.keysimportKeys
importtime
importsys
default_encoding='utf-8'
ifsys.getdefaultencoding()!=default_encoding:
reload(sys)
sys.setdefaultencoding(default_encoding)
district_navs=['nav2','nav1','nav3','nav4','nav5','nav6','nav7','nav8','nav9','nav10']
district_names=['福田區','羅湖區','南山區','鹽田區','寶安區','龍崗區','光明新區','坪山新區','龍華新區','大鵬新區']
flag=1
while(flag>0):
driver=webdriver.Chrome()
driver.get("hianCe/")
#選擇降雨量
driver.find_element_by_xpath("//span[@id='fenqu_H24R']").click()
filename=time.strftime("%Y%m%d%H%M",time.localtime(time.time()))+'.txt'
#創建文件
output_file=open(filename,'w')
#選擇行政區
foriinrange(len(district_navs)):
driver.find_element_by_xpath("//div[@id='"+district_navs[i]+"']").click()
#printdriver.page_source
timeElem=driver.find_element_by_id("time_shikuang")
#輸出時間和站點名
output_file.write(timeElem.text+',')
output_file.write(district_names[i]+',')
elems=driver.find_elements_by_xpath("//span[@onmouseover='javscript:changeTextOver(this)']")
#輸出每個站點的數據,格式為:站點名,一小時降雨量,當日累積降雨量
foreleminelems:
output_file.write(AMonitorRecord(elem.get_attribute("title"))+',')
output_file.write(' ')
output_file.close()
driver.close()
time.sleep(3600)
- 文件中引用的文件testString只是修改輸出格式,提取有效數據。
#Encoding=utf-8
defOnlyCharNum(s,oth=''):
s2=s.lower()
fomart=',.'
forcins2:
ifnotcinfomart:
s=s.replace(c,'')
returns
defAMonitorRecord(str):
str=str.split(":")
returnstr[0]+","+OnlyCharNum(str[1])
- 一小時抓取一次數據,結果如下:
[python]view plain
㈨ 如何利用python爬取網頁內容
利用python爬取網頁內容需要用scrapy(爬蟲框架),但是很簡單,就三步
定義item類
開發spider類
開發pipeline
想學習更深的爬蟲,可以用《瘋狂python講義》
㈩ 如何用python寫出爬蟲
先檢查是否有API
API是網站官方提供的數據介面,如果通過調用API採集數據,則相當於在網站允許的范圍內採集,這樣既不會有道德法律風險,也沒有網站故意設置的障礙;不過調用API介面的訪問則處於網站的控制中,網站可以用來收費,可以用來限制訪問上限等。整體來看,如果數據採集的需求並不是很獨特,那麼有API則應優先採用調用API的方式。
數據結構分析和數據存儲
爬蟲需求要十分清晰,具體表現為需要哪些欄位,這些欄位可以是網頁上現有的,也可以是根據網頁上現有的欄位進一步計算的,這些欄位如何構建表,多張表如何連接等。值得一提的是,確定欄位環節,不要只看少量的網頁,因為單個網頁可以缺少別的同類網頁的欄位,這既有可能是由於網站的問題,也可能是用戶行為的差異,只有多觀察一些網頁才能綜合抽象出具有普適性的關鍵欄位——這並不是幾分鍾看幾個網頁就可以決定的簡單事情,如果遇上了那種臃腫、混亂的網站,可能坑非常多。
對於大規模爬蟲,除了本身要採集的數據外,其他重要的中間數據(比如頁面Id或者url)也建議存儲下來,這樣可以不必每次重新爬取id。
資料庫並沒有固定的選擇,本質仍是將Python里的數據寫到庫里,可以選擇關系型資料庫MySQL等,也可以選擇非關系型資料庫MongoDB等;對於普通的結構化數據一般存在關系型資料庫即可。sqlalchemy是一個成熟好用的資料庫連接框架,其引擎可與Pandas配套使用,把數據處理和數據存儲連接起來,一氣呵成。
數據流分析
對於要批量爬取的網頁,往上一層,看它的入口在哪裡;這個是根據採集范圍來確定入口,比如若只想爬一個地區的數據,那從該地區的主頁切入即可;但若想爬全國數據,則應更往上一層,從全國的入口切入。一般的網站網頁都以樹狀結構為主,找到切入點作為根節點一層層往裡進入即可。
值得注意的一點是,一般網站都不會直接把全量的數據做成列表給你一頁頁往下翻直到遍歷完數據,比如鏈家上面很清楚地寫著有24587套二手房,但是它只給100頁,每頁30個,如果直接這么切入只能訪問3000個,遠遠低於真實數據量;因此先切片,再整合的數據思維可以獲得更大的數據量。顯然100頁是系統設定,只要超過300個就只顯示100頁,因此可以通過其他的篩選條件不斷細分,只到篩選結果小於等於300頁就表示該條件下沒有缺漏;最後把各種條件下的篩選結果集合在一起,就能夠盡可能地還原真實數據量。
明確了大規模爬蟲的數據流動機制,下一步就是針對單個網頁進行解析,然後把這個模式復制到整體。對於單個網頁,採用抓包工具可以查看它的請求方式,是get還是post,有沒有提交表單,欲採集的數據是寫入源代碼里還是通過AJAX調用JSON數據。
同樣的道理,不能只看一個頁面,要觀察多個頁面,因為批量爬蟲要弄清這些大量頁面url以及參數的規律,以便可以自動構造;有的網站的url以及關鍵參數是加密的,這樣就悲劇了,不能靠著明顯的邏輯直接構造,這種情況下要批量爬蟲,要麼找到它加密的js代碼,在爬蟲代碼上加入從明文到密碼的加密過程;要麼採用下文所述的模擬瀏覽器的方式。
數據採集
之前用R做爬蟲,不要笑,R的確可以做爬蟲工作;但在爬蟲方面,Python顯然優勢更明顯,受眾更廣,這得益於其成熟的爬蟲框架,以及其他的在計算機系統上更好的性能。scrapy是一個成熟的爬蟲框架,直接往裡套用就好,比較適合新手學習;requests是一個比原生的urllib包更簡潔強大的包,適合作定製化的爬蟲功能。requests主要提供一個基本訪問功能,把網頁的源代碼給download下來。一般而言,只要加上跟瀏覽器同樣的Requests Headers參數,就可以正常訪問,status_code為200,並成功得到網頁源代碼;但是也有某些反爬蟲較為嚴格的網站,這么直接訪問會被禁止;或者說status為200也不會返回正常的網頁源碼,而是要求寫驗證碼的js腳本等。
下載到了源碼之後,如果數據就在源碼中,這種情況是最簡單的,這就表示已經成功獲取到了數據,剩下的無非就是數據提取、清洗、入庫。但若網頁上有,然而源代碼里沒有的,就表示數據寫在其他地方,一般而言是通過AJAX非同步載入JSON數據,從XHR中找即可找到;如果這樣還找不到,那就需要去解析js腳本了。
解析工具
源碼下載後,就是解析數據了,常用的有兩種方法,一種是用BeautifulSoup對樹狀HTML進行解析,另一種是通過正則表達式從文本中抽取數據。
BeautifulSoup比較簡單,支持Xpath和CSSSelector兩種途徑,而且像Chrome這類瀏覽器一般都已經把各個結點的Xpath或者CSSSelector標記好了,直接復制即可。以CSSSelector為例,可以選擇tag、id、class等多種方式進行定位選擇,如果有id建議選id,因為根據HTML語法,一個id只能綁定一個標簽。
正則表達式很強大,但構造起來有點復雜,需要專門去學習。因為下載下來的源碼格式就是字元串,所以正則表達式可以大顯身手,而且處理速度很快。
對於HTML結構固定,即同樣的欄位處tag、id和class名稱都相同,採用BeautifulSoup解析是一種簡單高效的方案,但有的網站混亂,同樣的數據在不同頁面間HTML結構不同,這種情況下BeautifulSoup就不太好使;如果數據本身格式固定,則用正則表達式更方便。比如以下的例子,這兩個都是深圳地區某個地方的經度,但一個頁面的class是long,一個頁面的class是longitude,根據class來選擇就沒辦法同時滿足2個,但只要注意到深圳地區的經度都是介於113到114之間的浮點數,就可以通過正則表達式"11[3-4].\d+"來使兩個都滿足。
數據整理
一般而言,爬下來的原始數據都不是清潔的,所以在入庫前要先整理;由於大部分都是字元串,所以主要也就是字元串的處理方式了。
字元串自帶的方法可以滿足大部分簡單的處理需求,比如strip可以去掉首尾不需要的字元或者換行符等,replace可以將指定部分替換成需要的部分,split可以在指定部分分割然後截取一部分。
如果字元串處理的需求太復雜以致常規的字元串處理方法不好解決,那就要請出正則表達式這個大殺器。
Pandas是Python中常用的數據處理模塊,雖然作為一個從R轉過來的人一直覺得這個模仿R的包實在是太難用了。Pandas不僅可以進行向量化處理、篩選、分組、計算,還能夠整合成DataFrame,將採集的數據整合成一張表,呈現最終的存儲效果。
寫入資料庫
如果只是中小規模的爬蟲,可以把最後的爬蟲結果匯合成一張表,最後導出成一張表格以便後續使用;但對於表數量多、單張表容量大的大規模爬蟲,再導出成一堆零散的表就不合適了,肯定還是要放在資料庫中,既方便存儲,也方便進一步整理。
寫入資料庫有兩種方法,一種是通過Pandas的DataFrame自帶的to_sql方法,好處是自動建表,對於對表結構沒有嚴格要求的情況下可以採用這種方式,不過值得一提的是,如果是多行的DataFrame可以直接插入不加索引,但若只有一行就要加索引否則報錯,雖然這個認為不太合理;另一種是利用資料庫引擎來執行SQL語句,這種情況下要先自己建表,雖然多了一步,但是表結構完全是自己控制之下。Pandas與SQL都可以用來建表、整理數據,結合起來使用效率更高。