6mb二級緩存
㈠ 處理器中的二級緩存6MB和3MB有何區別
二級緩存越大,CPU讀取速度越快,CPU運算速度越快。
CPU緩存(Cache Memory)位於CPU與內存之間的臨時存儲器,容量比內存小但交換速度快。
在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。
最初緩存只有一級,二級緩存(L2 CACHE)出現是為了協調一級緩存與內存之間的速度。二級緩存比一級緩存速度更慢,容量更大,主要就是做一級緩存和內存之間數據臨時交換的地方用。
實際上,現在Intel和AMD處理器在一級緩存的邏輯結構設計上有所不同,所以二級緩存對CPU性能的影響也不盡相同。
㈡ 電腦的緩存指的是什麼
CPU緩存(Cache
Memory)位於CPU與內存之間的臨時存儲器,它的容量比內存小但交換速度快。在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個內存儲器(緩存+內存)就變成了既有緩存的高速度,又有內存的大容量的存儲系統了。緩存對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與緩存間的帶寬引起的。
緩存是為了解決CPU速度和內存速度的速度差異問題。內存中被CPU訪問最頻繁的數據和指令被復制入CPU中的緩存,這樣CPU就可以不經常到象「蝸牛」一樣慢的內存中去取數據了,CPU只要到緩存中去取就行了,而緩存的速度要比內存快很多。
這里要特別指出的是:
1.因為緩存只是內存中少部分數據的復製品,所以CPU到緩存中尋找數據時,也會出現找不到的情況(因為這些數據沒有從內存復制到緩存中去),這時CPU還是會到內存中去找數據,這樣系統的速度就慢下來了,不過CPU會把這些數據復制到緩存中去,以便下一次不要再到內存中去取。
2.因為隨著時間的變化,被訪問得最頻繁的數據不是一成不變的,也就是說,剛才還不頻繁的數據,此時已經需要被頻繁的訪問,剛才還是最頻繁的數據,現在又不頻繁了,所以說緩存中的數據要經常按照一定的演算法來更換,這樣才能保證緩存中的數據是被訪問最頻繁的。
緩存的工作原理
[編輯本段]
緩存的工作原理是當CPU要讀取一個數據時,首先從緩存中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。
正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在緩存中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先緩存後內存。
一級緩存和二級緩存
[編輯本段]
為了分清這兩個概念,我們先了解一下RAM
。RAM和ROM相對的,RAM是掉電以後,其中的信息就消失那一種,ROM在掉電以後信息也不會消失那一種。
RAM又分兩種,一種是靜態RAM,SRAM;一種是動態RAM,DRAM。前者的存儲速度要比後者快得多,我們現在使用的內存一般都是動態RAM。
有的菜鳥就說了,為了增加系統的速度,把緩存擴大不就行了嗎,擴大的越大,緩存的數據越多,系統不就越快了嗎?緩存通常都是靜態RAM,速度是非常的快,
但是靜態RAM集成度低(存儲相同的數據,靜態RAM的體積是動態RAM的6倍),
價格高(同容量的靜態RAM是動態RAM的四倍),
由此可見,擴大靜態RAM作為緩存是一個非常愚蠢的行為,
但是為了提高系統的性能和速度,我們必須要擴大緩存,
這樣就有了一個折中的方法,不擴大原來的靜態RAM緩存,而是增加一些高速動態RAM做為緩存,
這些高速動態RAM速度要比常規動態RAM快,但比原來的靜態RAM緩存慢,
我們把原來的靜態ram緩存叫一級緩存,而把後來增加的動態RAM叫二級緩存。
一級緩存和二級緩存中的內容都是內存中訪問頻率高的數據的復製品(映射),它們的存在都是為了減少高速CPU對慢速內存的訪問。
通常CPU找數據或指令的順序是:先到一級緩存中找,找不到再到二級緩存中找,如果還找不到就只有到內存中找了。
緩存的技術發展
[編輯本段]
最早先的CPU緩存是個整體的,而且容量很低,英特爾公司從Pentium時代開始把緩存進行了分類。當時集成在CPU內核中的緩存已不足以滿足CPU的需求,而製造工藝上的限制又不能大幅度提高緩存的容量。因此出現了集成在與CPU同一塊電路板上或主板上的緩存,此時就把
CPU內核集成的緩存稱為一級緩存,而外部的稱為二級緩存。一級緩存中還分數據緩存(Data
Cache,D-Cache)和指令緩存(Instruction
Cache,I-Cache)。二者分別用來存放數據和執行這些數據的指令,而且兩者可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。英特爾公司在推出Pentium
4處理器時,用新增的一種一級追蹤緩存替代指令緩存,容量為12KμOps,表示能存儲12K條微指令。
隨著CPU製造工藝的發展,二級緩存也能輕易的集成在CPU內核中,容量也在逐年提升。現在再用集成在CPU內部與否來定義一、二級緩存,已不確切。而且隨著二級緩存被集成入CPU內核中,以往二級緩存與CPU大差距分頻的情況也被改變,此時其以相同於主頻的速度工作,可以為CPU提供更高的傳輸速度。
二級緩存是CPU性能表現的關鍵之一,在CPU核心不變化的情況下,增加二級緩存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二級緩存上有差異,由此可見二級緩存對於CPU的重要性。
CPU在緩存中找到有用的數據被稱為命中,當緩存中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有二級緩存的CPU中,讀取一級緩存的命中率為80%。也就是說CPU一級緩存中找到的有用數據占數據總量的80%,剩下的20%從二級緩存中讀取。由於不能准確預測將要執行的數據,讀取二級緩存的命中率也在80%左右(從二級緩存讀到有用的數據占總數據的16%)。那麼還有的數據就不得不從內存調用,但這已經是一個相當小的比例了。目前的較高端的CPU中,還會帶有三級緩存,它是為讀取二級緩存後未命中的數據設計的—種緩存,在擁有三級緩存的CPU中,只有約5%的數據需要從內存中調用,這進一步提高了CPU的效率。
為了保證CPU訪問時有較高的命中率,緩存中的內容應該按一定的演算法替換。一種較常用的演算法是「最近最少使用演算法」(LRU演算法),它是將最近一段時間內最少被訪問過的行淘汰出局。因此需要為每行設置一個計數器,LRU演算法是把命中行的計數器清零,其他各行計數器加1。當需要替換時淘汰行計數器計數值最大的數據行出局。這是一種高效、科學的演算法,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出緩存,提高緩存的利用率。
CPU產品中,一級緩存的容量基本在4KB到64KB之間,二級緩存的容量則分為128KB、256KB、512KB、1MB、2MB、4MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高。
現在主流的CPU二級緩存都在2MB左右,其中英特爾公司07年相繼推出了台式機用的4MB、6MB二級緩存的高性能CPU,不過價格也是相對比較高的,對於對配置要求不是太高的朋友,一般的2MB二級緩存的雙核CPU基本也可以滿足日常上網需要了。
㈢ i54590處理器散片和盒裝有哪些區別,i5處理器的一級緩存二級緩存6MB和二級緩存12MB的區別
I5 4590盒裝質保三年、散片質保一年,盒裝自帶CPU散熱器、散片需要另外買散熱器,盒裝價格價格較貴、一般1200-1300左右,散片價格便宜、一般1100左右。I5 4590三級緩存6MB。首先看CPU核芯性能,在差不多的情況下,緩存越大越好。
㈣ 一二 三 級緩存 分別都有多大啊
CPU產品中,一級緩存的容量基本在4KB到64KB之間,二級緩存的容量則 二級緩存
分為128KB、256KB、512KB、1MB、2MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高歷年來Intel都是通過二級緩存的大小來劃分產品線,初期只有奔騰和賽揚兩種規格,到了酷睿2時代Intel達到了登峰造極的境界:僅僅是雙核產品就擁有512K、1M、2M、3M、4M、6M多達六個版本,四核產品也有4M、6M、8M、12M四個版本,令人眼花繚亂!而三級緩存從2MB增加到6MB!
㈤ 二級緩存容量的重要意義
緩存工作的原則,就是「引用的局部性」,這可以分為時間局部性和空間局部性。空間局部性是指CPU在某一時刻需要某個數據,那麼很可能下一步就需要其附近的數據;時間局部性是指當某個數據被訪問過一次之後,過不了多久時間就會被再一次訪問。對於應用程序而言,不管是指令流還是數據流都會出現引用的局部性現象。
舉個簡單的例子,比如在播放DVD影片的時候,DVD數據由一系列位元組組成,這個時候CPU會依次從頭處理到尾地調用DVD數據,如果CPU這次讀取DVD數據為1分30秒,那麼下次讀取的時候就會從1分31秒開始,因此這種情況下有序排列的數據都是依次被讀入CPU進行處理。從數據上來看,對於Word一類的應用程序通常都有著較好的空間局部性。用戶在使用中不會一次打開7、8個文檔,不諱在其中某一個文檔中打上幾個詞就換一個。大多數用戶都是打開一兩個文檔,然後就是長時間對它們進行處理而不會做其他事情。這樣在內存中的數據都會集中在一個區域中,也就可以被CPU集中處理。 介於從處理器內部到一級緩存、二級緩存最後到內存的所需時間會越來越慢,所以緩存的命中率和主頻在理論上也會影響到緩存的性能表現,但實際使用中,純理論的情況會出現嗎?下面就通過測試來檢驗一下。
在《Quake4》的測試中,主頻共同提升到3.2G之後,512KB與1MB的性能差距從原有的23%下降到了20%。2MB與4MB的性能差距則有微弱的提升,從原有的8%提高到了9%。512KB與6MB的性能差距則沒有變化,主頻從2.66G提高到3.2G之後,兩者的性能差距依舊保持在相同的59%上。
在《半條命2》的測試中,512KB與1MB的性能差距從原有的23%提高到了25%。2MB與4MB的性能差距則有提升,從原有的25%提高到了28%。512KB與6MB的性能差距提升相對明顯,性能差距從2.66G主頻下的102%提高到了3.2G下的120%,有18%的提高。
在《英雄連》的測試中,提升頻率之後的512KB二級緩存和1MB二級緩存的性能差距為40%,略高於在2.66G主頻下的37%。而2MB與4MB的性能差距則從原有的14%提高到了16%。512KB與6MB的性能差距從原有的123%提高到了131%,可見在《英雄連》這種對處理器非常敏感的游戲中,主頻越高,越能更好的發揮出大二級緩存的優勢。
通過上面的測試我們可以大致了解到,隨著主頻的提高,在大多數情況下,不同容量的二級緩存在性能上確實會有更大的性能差距。但是與主頻的提升並不成正比,在原有的基數比例下,當主頻同步提升20%的情況下,游戲中大致會出現8%左右的緩存性能增長,最高時也僅僅達到18%(《半條命2》中)。 假設有一個運算任務,要從「1」一直遞加到「999999」。在傳統的「實數據讀寫緩存」架構下,這一系列數據中最先用到的數據(如「1、2……449、450」)將存儲在CPU一級數據緩存中,更多的數據(如「451、452……899999、900000」)存儲在CPU二級緩存中,其餘的數據(如「900001、999002……999998、999999」)暫存在內存中,CPU將按照一級數據緩存、二級緩存和內存的順序讀取這些數據。
一級緩存的存儲方式
但是由於其一級數據緩存不存儲數據,數據存儲在二級緩存中,因此對二級緩存容量的依賴非常大,所以CPU需要更大的二級緩存容量才能發揮出應有的性能。在實際應用中,CPU處理的數據中大多數都是0KB~128KB大小的數據,128KB~256KB的數據約有10%,256KB~512KB的數據有5%,512KB~1MB的數據僅有3%左右。所以對於這種CPU來說,二級緩存容量從0KB增加到256KB對CPU性能的提高幾乎是直線性的;增加到512KB對CPU性能的提高稍微小一些;從512KB增加到1MB,普通用戶就很難體會到CPU性能有提高了。正因為如此,大家能感受到Pentium 4 C(512KB二級緩存)與Celeron(128KB二級緩存)的性能差異,卻很難感受到Pentium 4C(512KB二級緩存)與Pentium 4 E(1MB二級緩存)的性能差異了。
例如,同為2.8GHz主頻的Celeron D(256KB二級緩存)和Pentium 4 E(1MB二級緩存)運算104萬位的耗時分別為56秒和48秒 ,除去外頻(前者為133MHz,後者為200MHz)的差異和超線程技術的影響,兩者的性能差距只有10%左右,對於普通用戶而言這樣的性能差距 是微不足道的;只有對CPU運算性能要求「苛刻」的玩家來說更大的二級緩存容量才是必須的。
相對的,由於AMD的Athlon 64/Athlon XP/Sempron/Duron系列產品的一級數據緩存直接存儲數據,而且128KB的容量在大多數情況下就 可以承擔CPU所急需的數據,所以其二級緩存對CPU性能的影響並沒有那麼大。這也就解釋了為什麼主頻和外頻相同的Athlon XP(256KB或512KB二級緩存)和Duron(64KB二級緩存)雖然二級緩存容量差異巨大,但實際性能差距不大的原因。而且Athlon 64/Sempron 系列CPU在內存控制器、流水線長度、頻率、匯流排架構和擴展指令集等諸多方面與以前的產品都有差異,因此在性能上受二級緩存容量的影響就 更小了。綜上所述,在CPU性能方面,並非只從二級緩存容量上作對比就可以得到准確的答案,實際上還要考慮到緩存的總體設計結構、一級數 據緩存容量等因素。雖然從總體上來講,二級緩存容量越大越好,但是並不是二級緩存容量提高一倍就能使CPU性能提升一倍。因此對於一般家 庭用戶來說,電腦主要是用來上網、欣賞音樂和電影以及文字處理,二級緩存為256KB的Celeron D或Sempron已經足夠了。只有對3D游戲、辦公軟體和多媒體編輯性能要求較高的用戶才需要更大二級緩存的CPU。 所謂處理器緩存,通常指的是二級高速緩存,或外部高速緩存。即高速緩沖存儲器,是位於CPU和主存儲器DRAM(Dynamic RAM)之間的規模較小的但速度很高的存儲器,通常由SRAM(靜態隨機存儲器)組成。用來存放那些被CPU頻繁使用的數據,以便使CPU不必依賴於速度較慢的DRAM(動態隨機存儲器)。L2高速緩存一直都屬於速度極快而價格也相當昂貴的一類內存,稱為SRAM(靜態RAM),SRAM(Static RAM)是靜態存儲器的英文縮寫。由於SRAM採用了與製作CPU相同的半導體工藝,因此與動態存儲器DRAM比較,SRAM的存取速度快,但體積較大,價格很高。
PC及其伺服器系統的發展趨勢之一是CPU主頻越做越高,系統架構越做越先進,而主存DRAM的結構和存取時間改進較慢。因此,緩存(Cache)技術愈顯重要,在PC系統中Cache越做越大。廣大用戶已把Cache做為評價和選購PC系統的一個重要指標。
㈥ X3330(四核心,二級緩存6MB,主頻2.66G),和E8400(二核,二級緩存6MB,主頻3.
玩雙核優化的游戲E8400強一些,如果是四核優化的就X3330性能更強了。X3330可以超頻的,稍微超一些,性能還是很強的。我推薦使用這個伺服器U。
㈦ cpu都是多大尺寸的
cpu內部矽片有指甲蓋大小,封裝後都是5厘米左右,手機類的單片機設備可以只有瓜子大小,例如:
AMD 65nmAthlonX2為126平方毫米
3MB二級緩存45nmCore2Duo的尺寸為81平方毫米
6MB二級緩存45nm
Core2 Duo的尺寸為107平方毫米
6MB二級緩存的45nm
Core2Quad的尺寸為81mm
(7)6mb二級緩存擴展閱讀:
CPU尺寸設計的較小有以下原因:
1、晶圓規格,新的規格意味著新的生產設備和生產線,代價昂貴,而且晶圓在一定質量的范圍內,做不了太大。
2、時序和延遲,CPU如果太大了,內部運算單元間的延遲就會加大,和cache的延遲也會加大,性能的提升曲線會變陡,直到還不如多顆CPU。
3、 發熱,發熱量指數增加,別說風冷,水冷油冷都降不下來。
㈧ 二級緩存6MB與3072KB L2是一個意思嗎
你上述兩者是相同的概念,二級緩存是CPU的一部分.因它縮短CPU和內存距離,它能顯注的提高處理器的處理速度,但又因CPU的面積有限,容量的提升也很困難.因此現在也變化為區分價格的主要標准.
㈨ 關於CPU二級緩存的問題
首先BIOS默認是開的,要是關的話不要說運行什麼了,就是刷新,打開我的電腦你試試速度就知道了,誤人子弟,在系統編輯注冊表可以關二級緩存,雷人啊,暈倒
㈩ 一級緩存,二級緩存是什麼意思有什麼用
首先我們來簡單了解一下一級緩存。目前所有主流處理器大都具有一級緩存和二級緩存,少數高端處理器還集成了三級緩存。其中,一級緩存可分為一級指令緩存和一級數據緩存。一級指令緩存用於暫時存儲並向CPU遞送各類運算指令;一級數據緩存用於暫時存儲並向CPU遞送運算所需數據,這就是一級緩存的作用
那麼,二級緩存的作用又是什麼呢?簡單地說,二級緩存就是一級緩存的緩沖器:一級緩存製造成本很高因此它的容量有限,二級緩存的作用就是存儲那些CPU處理時需要用到、一級緩存又無法存儲的數據。同樣道理,三級緩存和內存可以看作是二級緩存的緩沖器,它們的容量遞增,但單位製造成本卻遞減。需要注意的是,無論是二級緩存、三級緩存還是內存都不能存儲處理器操作的原始指令,這些指令只能存儲在CPU的一級指令緩存中,而餘下的二級緩存、三級緩存和內存僅用於存儲CPU所需數據。
根據工作原理的不同,目前主流處理器所採用的一級數據緩存又可以分為實數據讀寫緩存和數據代碼指令追蹤緩存2種,它們分別被AMD和Intel所採用。不同的一級數據緩存設計對於二級緩存容量的需求也各不相同,下面讓我們簡單了解一下這兩種一級數據緩存設計的不同之處。
一、AMD一級數據緩存設計
AMD採用的一級緩存設計屬於傳統的「實數據讀寫緩存」設計。基於該架構的一級數據緩存主要用於存儲CPU最先讀取的數據;而更多的讀取數據則分別存儲在二級緩存和系統內存當中。做個簡單的假設,假如處理器需要讀取「AMD ATHLON 64 3000+ IS GOOD」這一串數據(不記空格),那麼首先要被讀取的「AMDATHL」將被存儲在一級數據緩存中,而餘下的「ON643000+ISGOOD」則被分別存儲在二級緩存和系統內存當中
需要注意的是,以上假設只是對AMD處理器一級數據緩存的一個抽象描述,一級數據緩存和二級緩存所能存儲的數據長度完全由緩存容量的大小決定,而絕非以上假設中的幾個位元組。「實數據讀寫緩存」的優點是數據讀取直接快速,但這也需要一級數據緩存具有一定的容量,增加了處理器的製造難度(一級數據緩存的單位製造成本較二級緩存高)。
二、Intel一級數據緩存設計
自P4時代開始,Intel開始採用全新的「數據代碼指令追蹤緩存」設計。基於這種架構的一級數據緩存不再存儲實際的數據,而是存儲這些數據在二級緩存中的指令代碼(即數據在二級緩存中存儲的起始地址)。假設處理器需要讀取「INTEL P4 IS GOOD」這一串數據(不記空格),那麼所有數據將被存儲在二級緩存中,而一級數據代碼指令追蹤緩存需要存儲的僅僅是上述數據的起始地址(如下圖所示)。
由於一級數據緩存不再存儲實際數據,因此「數據代碼指令追蹤緩存」設計能夠極大地降CPU對一級數據緩存容量的要求,降低處理器的生產難度。但這種設計的弊端在於數據讀取效率較「實數據讀寫緩存設計」低,而且對二級緩存容量的依賴性非常大。
在了解了一級緩存、二級緩存的大致作用及其分類以後,下面我們來回答以下硬體一菜鳥網友提出的問題。
從理論上講,二級緩存越大處理器的性能越好,但這並不是說二級緩存容量加倍就能夠處理器帶來成倍的性能增長。目前CPU處理的絕大部分數據的大小都在0-256KB之間,小部分數據的大小在256KB-512KB之間,只有極少數數據的大小超過512KB。所以只要處理器可用的一級、二級緩存容量達到256KB以上,那就能夠應付正常的應用;512KB容量的二級緩存已經足夠滿足絕大多數應用的需求。
這其中,對於採用「實數據讀寫緩存」設計的AMD Athlon 64、Sempron處理器而言,由於它們已經具備了64KB一級指令緩存和64KB一級數據緩存,只要處理器的二級緩存容量大於等於128KB就能夠存儲足夠的數據和指令,因此它們對二級緩存的依賴性並不大。這就是為什麼主頻同為1.8GHz的Socket 754 Sempron 3000+(128KB二級緩存)、Sempron 3100+(256KB二級緩存)以及Athlon 64 2800+(512KB二級緩存)在大多數評測中性能非常接近的主要原因。所以對於普通用戶而言754 Sempron 2600+是值得考慮的。
反觀Intel目前主推的P4、賽揚系列處理器,它們都採用了「數據代碼指令追蹤緩存」架構,其中Prescott內核的一級緩存中只包含了12KB一級指令緩存和16KB一級數據緩存,而Northwood內核更是只有12KB一級指令緩存和8KB一級數據緩存。所以P4、賽揚系列處理器對二級緩存的依賴性是非常大的,賽揚D 320(256KB二級緩存)與賽揚 2.4GHz(128KB二級緩存)性能上的巨大差距就很好地證明了這一點;而賽揚D和P4 E處理器之間的性能差距同樣十分明顯。
最後,如果您是狂熱的游戲發燒友或者從事多媒體製作的專業用戶,那麼具有1MB二級緩存的P4處理器和具有512KB/1MB二級緩存的Athlon 64處理器才是您理想的選擇。因為在高負荷的運算下,CPU的一級緩存和二級緩存近乎「爆滿」,在這個時候大容量的二級緩存能夠為處理器帶來5%-10%左右的性能提升,這對於那些要求苛刻的用戶來說是完全有必要的