memcached分布式緩存
❶ Memcached真的過時了嗎
這個其實沒有什麼過時不過時,都是依據你自己的需求和看法來選擇。
❷ 緩存系統中的主要使用的數據結構是什麼
緩存系統中的主要使用的數據結構是memcached。
memcached是一套分布式的高速緩存系統,由LiveJournal的Brad Fitzpatrick開發,但被許多網站使用。這是一套開放源代碼軟體,以BSD license授權發布。
memcached的API使用三十二比特的循環冗餘校驗(CRC-32)計算鍵值後,將數據分散在不同的機器上。當表格滿了以後,接下來新增的數據會以LRU機制替換掉。
由於memcached通常只是當作緩存系統使用,所以使用memcached的應用程序在寫回較慢的系統時(像是後端的資料庫)需要額外的代碼更新memcached內的數據。
(2)memcached分布式緩存擴展閱讀:
一、存儲方式
為了提高性能,memcached中保存的數據都存儲在memcached內置的內存存儲空間中。由於數據僅存在於內存中,因此重啟memcached、重啟操作系統會導致全部數據消失。
另外,內容容量達到指定值之後,就基於LRU(Least Recently Used)演算法自動刪除不使用的緩存。memcached本身是為緩存而設計的伺服器,因此並沒有過多考慮數據的永久性問題。
二、通信分布式
memcached盡管是「分布式」緩存伺服器,但伺服器端並沒有分布式功能。各個memcached不會互相通信以共享信息。那麼,怎樣進行分布式呢?這完全取決於客戶端的實現。本文也將介紹memcached的分布式。
❸ 常用的緩存技術
第一章 常用的緩存技術
1、常見的兩種緩存
本地緩存:不需要序列化,速度快,緩存的數量與大小受限於本機內存
分布式緩存:需要序列化,速度相較於本地緩存較慢,但是理論上緩存的數量與大小無限(因為緩存機器可以不斷擴展)
2、本地緩存
Google guava cache:當下最好用的本地緩存
Ehcache:spring默認集成的一個緩存,以spring cache的底層緩存實現類形式去操作緩存的話,非常方便,但是欠缺靈活,如果想要靈活使用,還是要單獨使用Ehcache
Oscache:最經典簡單的頁面緩存
3、分布式緩存
memcached:分布式緩存的標配
Redis:新一代的分布式緩存,有替代memcached的趨勢
3.1、memcached
經典的一致性hash演算法
基於slab的內存模型有效防止內存碎片的產生(但同時也需要估計好啟動參數,否則會浪費很多的內存)
集群中機器之間互不通信(相較於Jboss cache等集群中機器之間的相互通信的緩存,速度更快<--因為少了同步更新緩存的開銷,且更適合於大型分布式系統中使用)
使用方便(這一點是相較於Redis在構建客戶端的時候而言的,盡管redis的使用也不困難)
很專一(專做緩存,這一點也是相較於Redis而言的)
3.2、Redis
可以存儲復雜的數據結構(5種)
strings-->即簡單的key-value,就是memcached可以存儲的唯一的一種形式,接下來的四種是memcached不能直接存儲的四種格式(當然理論上可以先將下面的一些數據結構中的東西封裝成對象,然後存入memcached,但是不推薦將大對象存入memcached,因為memcached的單一value的最大存儲為1M,可能即使採用了壓縮演算法也不夠,即使夠,可能存取的效率也不高,而redis的value最大為1G)
hashs-->看做hashTable
lists-->看做LinkedList
sets-->看做hashSet,事實上底層是一個hashTable
sorted sets-->底層是一個skipList
有兩種方式可以對緩存數據進行持久化
RDB
AOF
事件調度
發布訂閱等
4、集成緩存
專指spring cache,spring cache自己繼承了ehcache作為了緩存的實現類,我們也可以使用guava cache、memcached、redis自己來實現spring cache的底層。當然,spring cache可以根據實現類來將緩存存在本地還是存在遠程機器上。
5、頁面緩存
在使用jsp的時候,我們會將一些復雜的頁面使用Oscache進行頁面緩存,使用非常簡單,就是幾個標簽的事兒;但是,現在一般的企業,前台都會使用velocity、freemaker這兩種模板引擎,本身速度就已經很快了,頁面緩存使用的也就很少了。
總結:
在實際生產中,我們通常會使用guava cache做本地緩存+redis做分布式緩存+spring cache就集成緩存(底層使用redis來實現)的形式
guava cache使用在更快的獲取緩存數據,同時緩存的數據量並不大的情況
spring cache集成緩存是為了簡單便捷的去使用緩存(以註解的方式即可),使用redis做其實現類是為了可以存更多的數據在機器上
redis緩存單獨使用是為了彌補spring cache集成緩存的不靈活
就我個人而言,如果需要使用分布式緩存,那麼首先redis是必選的,因為在實際開發中,我們會緩存各種各樣的數據類型,在使用了redis的同時,memcached就完全可以舍棄了,但是現在還有很多公司在同時使用memcached和redis兩種緩存。
❹ .Net的Cache和Memcached有什麼優缺點
如果你的伺服器只有一台,且資料庫讀寫壓力不大,就沒必要使用Memcached。HttpRuntime.Cache是本地緩存,Memcached是分布式緩存,兩者的區別在於:
本地緩存
本地緩存可能是大家用的最多的一種緩存方式了,不管是本地內存還是磁碟,其速度快,成本低,在有些場合非常有效。
但是對於web系統的集群負載均衡結構來說,本地緩存使用起來就比較受限制,因為當資料庫數據發生變化時,你沒有一個簡單有效的方法去更新本地緩存;然而,你如果在不同的伺服器之間去同步本地緩存信息,由於緩存的低時效性和高訪問量的影響,其成本和性能恐怕都是難以接受的。
分布式緩存
前面提到過,本地緩存的使用很容易讓你的應用伺服器帶上「狀態」,這種情況下,數據同步的開銷09會比較大;尤其是在集群環境中更是如此!
分布式緩存這種東西存在的目的就是為了提供比RDB更高的TPS和擴展性,同時有幫你承擔了數據同步的痛苦;優秀的分布式緩存系統有大家所熟知的Memcached、Redis(當然也許你把它看成是NoSQL,但是我個人更願意把分布式緩存也看成是NoSQL),還有淘寶自主開發的Tair等。
對比關系型資料庫和緩存存儲,其在讀和寫性能上的差距可謂天壤之別;就拿淘寶的Tair來說,mdb引擎的單機QPS已在10w以上,ldb的也達到了5w~7w,而集群的性能會更高(目前uic所用的Tair集群QPS高達數十萬!)。
所以,在技術和業務都可以接受的情況下,我們可以盡量把讀寫壓力從資料庫轉移到緩存上,以保護看似強大,其實卻很脆弱的關系型資料庫。
❺ memcached在分布式中怎麼把數據存入指定的memcached伺服器中
提供連接池的Memcached客戶端,都會提供 SetByKey($srvKey, $key, $value) 這樣的方法的
不知道你用的是什麼語言
public bool Memcached::setByKey ( string $server_key , string $key , mixed $value [, int $expiration ] )
這個是 PHP 提供的方法和參數,可以指定往某個伺服器寫,你可以參考一下,並找到你用的語言的客戶端的相應文檔,文檔裡面一般都有的
❻ 緩存的分布緩存
分布式緩存系統是為了解決資料庫伺服器和web伺服器之間的瓶頸。如果一個網站的流量很大,這個瓶頸將會非常明顯,每次資料庫查詢耗費的時間將會非常可觀。對於更新速度不是很快的網站,我們可以用靜態化來避免過多的資料庫查詢。對於更新速度以秒計的網站,靜態化也不會太理想,可以用緩存系統來構建。如果只是單台伺服器用作緩存,問題不會太復雜,如果有多台伺服器用作緩存,就要考慮緩存伺服器的負載均衡。
使用Memcached分布式緩存服務來達到保存用戶的會話數據,而達到各個功能模塊都能夠跨省份、跨伺服器共享本次會話中的私有數據的目的。每個省份使用一台伺服器來做為Memcached伺服器來存儲用話的會話中的數據,當然也可以多台伺服器,但必須確保每個省份的做Memcached伺服器數量必須一致,這樣才能夠保證Memcached客戶端操作的是同一份數據,保證數據的一致性。
會話數據的添加、刪除、修改
Memcached客戶端,添加、刪除和、修改會話信息數據時,不僅要添加、刪除、修改本省的Memcached伺服器數據,而且同時要對其它省份的Memcahed伺服器做同樣的操作,這樣用戶訪問其它省份的伺服器的功能模塊進也能讀取到相同的會話數據。Memcached客戶端伺服器的列表使用區域網的內網IP(如:192.168.1.179)操作本省的Memcahed伺服器,使用公網的IP((如:202.183.62.210))操作其它省份的Memcahe伺服器。
會話數據的讀取
系統所有模塊讀取會話數據的Memcached客戶端伺服器列表都設為本省Memcached伺服器地址的內網IP來向Memcahed伺服器中讀取會話數據。
同一會話的確認
使用Cookie來保持客戶與服務端的聯系。每一次會話開始就生成一個GUID作為SessionID,保存在客戶端的Cookie中,作用域是頂級域名,這樣二級、三級域名就可以共享到這個Cookie,系統中就使用這個SessionID來確認它是否是同一個會話。
會話數據的唯一ID
會話數據存儲在Memcached伺服器上的唯一鍵Key也就是會話數據數據的唯一ID定義為:SessionID_Name, SessionID就是保存在客戶端Cookie中的SessionID,Name就是會話數據的名稱,同一次會話中各個會話數據的Name必須是唯一的,否則新的會話數據將覆蓋舊的會話數據。
會話的失效時間
會話的失效通過控制Cookie的有效時間來實現,會話的時間設為SessionID或Cookie中的有效時間,且每一次訪問SessionID時都要重新設置一下Cookie的有效時間,這樣就達到的會話的有效時間就是兩次間訪問Cookie中SessionID值的的最長時間,如果兩次訪問的間隔時間超過用效時間,保存在SessionID的Cookie將會失效,並生成新的SessionID存放在Cookie中, SessionID改變啦,會話就結束啦。Memcached伺服器中會話數據的失效,每一次向Memcache伺服器中添加會話數據時,都把有效時間設為一天也就是24小時,讓Memcached服務使用它內部的機制去清除,不必在程序中特別做會話數據的刪除操作。數據在Memcache伺服器中有有效時間只是邏輯上的,就算是過了24 小時,如果分配給Memcached服務的內存還夠用的話,數據還是保存在內存當中的,只是Memcache客戶端讀取不到而已。只有到了分配給Memcached服務的內存不夠用時,它才會清理沒用或者比較舊的數據,也就是懶性清除。
❼ 你使用過 Memcache 緩存嗎如果使用過,能夠簡單的描述一下它的工作原理嗎
首先 memcached 是以守護程序方式運行於一個或多個伺服器中,隨時接受客戶端的連接操作,客戶端可以由各種語言編寫,目前已知的客戶端 API 包括 Perl/PHP/Python/Ruby/Java/C#/C 等等。PHP 等客戶端在與 memcached 服務建立連接之後,接下來的事情就是存取對象了,每個被存取的對象都有一個唯一的標識符 key,存取操作均通過這個 key 進行,保存到 memcached 中的對象實際上是放置內存中的,並不是保存在 cache 文件中的,這也是為什麼PHP內存緩存技術memcached 能夠如此高效快速的原因。注意,這些對象並不是持久的,服務停止之後,里邊的數據就會丟失。
❽ MemCache有哪些特點
libevent是個程序庫,它將Linux的epoll、BSD類操作系統的kqueue等事件處理功能封裝成統一的介面。即使對伺服器的連接數增加,也能發揮O(1)的性能。memcached使用這個libevent庫,因此能在Linux、BSD、Solaris等操作系統上發揮其高性能。
O(1)是資料庫里的執行速度,有一個比較快的性能。
存儲方式
為了提高性能,memcached中保存的數據都存儲在memcached內置的內存存儲空間中。由於數據僅存在於內存中,因此重啟memcached、重啟操作系統會導致全部數據消失。另外,內容容量達到指定值之後,就基於LRU(Least Recently Used)演算法自動刪除不使用的緩存。memcached本身是為緩存而設計的伺服器,因此並沒有過多考慮數據的永久性問題。
通信分布式
memcached盡管是「分布式」緩存伺服器,但伺服器端並沒有分布式功能。各個memcached不會互相通信以共享信息。那麼,怎樣進行分布式呢?這完全取決於客戶端的實現。如取余,一致性哈希,都可以解決分布式的問題。
底層客戶端並沒有給我們做一些底層的演算法問題,比如我想做一個memcached的分布式,他不會自動進行分布式。
❾ Redis 和 Memcached 各有什麼優缺點,主要的應用場景是什麼樣的
Redis 和 Memcache 都是基於內存的數據存儲系統。Memcached是高性能分布式內存緩存服務;Redis是一個開源的key-value存儲系統。與Memcached類似,Redis將大部分數據存儲在內存中,支持的數據類型包括:字元串、哈希 表、鏈表、等數據類型的相關操作。下面我們來進行來看一下redis和memcached的區別。權威比較
Redis的作者Salvatore Sanfilippo曾經對這兩種基於內存的數據存儲系統進行過比較:
Redis支持伺服器端的數據操作:Redis相比Memcached來說,擁有更多的數據結構和並支持更豐富的數據操作,通常在Memcached里,你需要將數據拿到客戶端來進行類似的修改再set回去。這大大增加了網路IO的次數和數據體積。在Redis中,這些復雜的操作通常和一般的GET/SET一樣高效。所以,如果需要緩存能夠支持更復雜的結構和操作,那麼Redis會是不錯的選擇。
內存使用效率對比:使用簡單的key-value存儲的話,Memcached的內存利用率更高,而如果Redis採用hash結構來做key-value存儲,由於其組合式的壓縮,其內存利用率會高於Memcached。
性能對比:由於Redis只使用單核,而Memcached可以使用多核,所以平均每一個核上Redis在存儲小數據時比Memcached性能更高。而在100k以上的數據中,Memcached性能要高於Redis,雖然Redis最近也在存儲大數據的性能上進行優化,但是比起Memcached,還是稍有遜色。
具體為什麼會出現上面的結論,以下為收集到的資料:
1、數據類型支持不同
與Memcached僅支持簡單的key-value結構的數據記錄不同,Redis支持的數據類型要豐富得多。最為常用的數據類型主要由五種:String、Hash、List、Set和Sorted Set。Redis內部使用一個redisObject對象來表示所有的key和value。redisObject最主要的信息如圖所示:
type代表一個value對象具體是何種數據類型,encoding是不同數據類型在redis內部的存儲方式,比如:type=string代表value存儲的是一個普通字元串,那麼對應的encoding可以是raw或者是int,如果是int則代表實際redis內部是按數值型類存儲和表示這個字元串的,當然前提是這個字元串本身可以用數值表示,比如:」123″ 「456」這樣的字元串。只有打開了Redis的虛擬內存功能,vm欄位欄位才會真正的分配內存,該功能默認是關閉狀態的。
1)String
常用命令:set/get/decr/incr/mget等;
應用場景:String是最常用的一種數據類型,普通的key/value存儲都可以歸為此類;
實現方式:String在redis內部存儲默認就是一個字元串,被redisObject所引用,當遇到incr、decr等操作時會轉成數值型進行計算,此時redisObject的encoding欄位為int。
2)Hash
常用命令:hget/hset/hgetall等
應用場景:我們要存儲一個用戶信息對象數據,其中包括用戶ID、用戶姓名、年齡和生日,通過用戶ID我們希望獲取該用戶的姓名或者年齡或者生日;
實現方式:Redis的Hash實際是內部存儲的Value為一個HashMap,並提供了直接存取這個Map成員的介面。如圖所示,Key是用戶ID, value是一個Map。這個Map的key是成員的屬性名,value是屬性值。這樣對數據的修改和存取都可以直接通過其內部Map的Key(Redis里稱內部Map的key為field), 也就是通過 key(用戶ID) + field(屬性標簽) 就可以操作對應屬性數據。當前HashMap的實現有兩種方式:當HashMap的成員比較少時Redis為了節省內存會採用類似一維數組的方式來緊湊存儲,而不會採用真正的HashMap結構,這時對應的value的redisObject的encoding為zipmap,當成員數量增大時會自動轉成真正的HashMap,此時encoding為ht。
3)List
常用命令:lpush/rpush/lpop/rpop/lrange等;
應用場景:Redis list的應用場景非常多,也是Redis最重要的數據結構之一,比如twitter的關注列表,粉絲列表等都可以用Redis的list結構來實現;
實現方式:Redis list的實現為一個雙向鏈表,即可以支持反向查找和遍歷,更方便操作,不過帶來了部分額外的內存開銷,Redis內部的很多實現,包括發送緩沖隊列等也都是用的這個數據結構。
4)Set
常用命令:sadd/spop/smembers/sunion等;
應用場景:Redis set對外提供的功能與list類似是一個列表的功能,特殊之處在於set是可以自動排重的,當你需要存儲一個列表數據,又不希望出現重復數據時,set是一個很好的選擇,並且set提供了判斷某個成員是否在一個set集合內的重要介面,這個也是list所不能提供的;
實現方式:set 的內部實現是一個 value永遠為null的HashMap,實際就是通過計算hash的方式來快速排重的,這也是set能提供判斷一個成員是否在集合內的原因。
5)Sorted Set
常用命令:zadd/zrange/zrem/zcard等;
應用場景:Redis sorted set的使用場景與set類似,區別是set不是自動有序的,而sorted set可以通過用戶額外提供一個優先順序(score)的參數來為成員排序,並且是插入有序的,即自動排序。當你需要一個有序的並且不重復的集合列表,那麼可以選擇sorted set數據結構,比如twitter 的public timeline可以以發表時間作為score來存儲,這樣獲取時就是自動按時間排好序的。
實現方式:Redis sorted set的內部使用HashMap和跳躍表(SkipList)來保證數據的存儲和有序,HashMap里放的是成員到score的映射,而跳躍表裡存放的是所有的成員,排序依據是HashMap里存的score,使用跳躍表的結構可以獲得比較高的查找效率,並且在實現上比較簡單。
2、內存管理機制不同
在Redis中,並不是所有的數據都一直存儲在內存中的。這是和Memcached相比一個最大的區別。當物理內存用完時,Redis可以將一些很久沒用到的value交換到磁碟。Redis只會緩存所有的key的信息,如果Redis發現內存的使用量超過了某一個閥值,將觸發swap的操作,Redis根據「swappability = age*log(size_in_memory)」計算出哪些key對應的value需要swap到磁碟。然後再將這些key對應的value持久化到磁碟中,同時在內存中清除。這種特性使得Redis可以保持超過其機器本身內存大小的數據。當然,機器本身的內存必須要能夠保持所有的key,畢竟這些數據是不會進行swap操作的。同時由於Redis將內存中的數據swap到磁碟中的時候,提供服務的主線程和進行swap操作的子線程會共享這部分內存,所以如果更新需要swap的數據,Redis將阻塞這個操作,直到子線程完成swap操作後才可以進行修改。當從Redis中讀取數據的時候,如果讀取的key對應的value不在內存中,那麼Redis就需要從swap文件中載入相應數據,然後再返回給請求方。 這里就存在一個I/O線程池的問題。在默認的情況下,Redis會出現阻塞,即完成所有的swap文件載入後才會相應。這種策略在客戶端的數量較小,進行批量操作的時候比較合適。但是如果將Redis應用在一個大型的網站應用程序中,這顯然是無法滿足大並發的情況的。所以Redis運行我們設置I/O線程池的大小,對需要從swap文件中載入相應數據的讀取請求進行並發操作,減少阻塞的時間。
對於像Redis和Memcached這種基於內存的資料庫系統來說,內存管理的效率高低是影響系統性能的關鍵因素。傳統C語言中的malloc/free函數是最常用的分配和釋放內存的方法,但是這種方法存在著很大的缺陷:首先,對於開發人員來說不匹配的malloc和free容易造成內存泄露;其次頻繁調用會造成大量內存碎片無法回收重新利用,降低內存利用率;最後作為系統調用,其系統開銷遠遠大於一般函數調用。所以,為了提高內存的管理效率,高效的內存管理方案都不會直接使用malloc/free調用。Redis和Memcached均使用了自身設計的內存管理機制,但是實現方法存在很大的差異,下面將會對兩者的內存管理機制分別進行介紹。
Memcached默認使用Slab Allocation機制管理內存,其主要思想是按照預先規定的大小,將分配的內存分割成特定長度的塊以存儲相應長度的key-value數據記錄,以完全解決內存碎片問題。Slab Allocation機制只為存儲外部數據而設計,也就是說所有的key-value數據都存儲在Slab Allocation系統里,而Memcached的其它內存請求則通過普通的malloc/free來申請,因為這些請求的數量和頻率決定了它們不會對整個系統的性能造成影響Slab Allocation的原理相當簡單。 如圖所示,它首先從操作系統申請一大塊內存,並將其分割成各種尺寸的塊Chunk,並把尺寸相同的塊分成組Slab Class。其中,Chunk就是用來存儲key-value數據的最小單位。每個Slab Class的大小,可以在Memcached啟動的時候通過制定Growth Factor來控制。假定圖中Growth Factor的取值為1.25,如果第一組Chunk的大小為88個位元組,第二組Chunk的大小就為112個位元組,依此類推。
當Memcached接收到客戶端發送過來的數據時首先會根據收到數據的大小選擇一個最合適的Slab Class,然後通過查詢Memcached保存著的該Slab Class內空閑Chunk的列表就可以找到一個可用於存儲數據的Chunk。當一條資料庫過期或者丟棄時,該記錄所佔用的Chunk就可以回收,重新添加到空閑列表中。
從以上過程我們可以看出Memcached的內存管理制效率高,而且不會造成內存碎片,但是它最大的缺點就是會導致空間浪費。因為每個Chunk都分配了特定長度的內存空間,所以變長數據無法充分利用這些空間。如圖 所示,將100個位元組的數據緩存到128個位元組的Chunk中,剩餘的28個位元組就浪費掉了。
Redis的內存管理主要通過源碼中zmalloc.h和zmalloc.c兩個文件來實現的。Redis為了方便內存的管理,在分配一塊內存之後,會將這塊內存的大小存入內存塊的頭部。如圖所示,real_ptr是redis調用malloc後返回的指針。redis將內存塊的大小size存入頭部,size所佔據的內存大小是已知的,為size_t類型的長度,然後返回ret_ptr。當需要釋放內存的時候,ret_ptr被傳給內存管理程序。通過ret_ptr,程序可以很容易的算出real_ptr的值,然後將real_ptr傳給free釋放內存。
Redis通過定義一個數組來記錄所有的內存分配情況,這個數組的長度為ZMALLOC_MAX_ALLOC_STAT。數組的每一個元素代表當前程序所分配的內存塊的個數,且內存塊的大小為該元素的下標。在源碼中,這個數組為zmalloc_allocations。zmalloc_allocations[16]代表已經分配的長度為16bytes的內存塊的個數。zmalloc.c中有一個靜態變數used_memory用來記錄當前分配的內存總大小。所以,總的來看,Redis採用的是包裝的mallc/free,相較於Memcached的內存管理方法來說,要簡單很多。
3、數據持久化支持
Redis雖然是基於內存的存儲系統,但是它本身是支持內存數據的持久化的,而且提供兩種主要的持久化策略:RDB快照和AOF日誌。而memcached是不支持數據持久化操作的。
1)RDB快照
Redis支持將當前數據的快照存成一個數據文件的持久化機制,即RDB快照。但是一個持續寫入的資料庫如何生成快照呢?Redis藉助了fork命令的 on write機制。在生成快照時,將當前進程fork出一個子進程,然後在子進程中循環所有的數據,將數據寫成為RDB文件。我們可以通過Redis的save指令來配置RDB快照生成的時機,比如配置10分鍾就生成快照,也可以配置有1000次寫入就生成快照,也可以多個規則一起實施。這些規則的定義就在Redis的配置文件中,你也可以通過Redis的CONFIG SET命令在Redis運行時設置規則,不需要重啟Redis。
Redis的RDB文件不會壞掉,因為其寫操作是在一個新進程中進行的,當生成一個新的RDB文件時,Redis生成的子進程會先將數據寫到一個臨時文件中,然後通過原子性rename系統調用將臨時文件重命名為RDB文件,這樣在任何時候出現故障,Redis的RDB文件都總是可用的。同時,Redis的RDB文件也是Redis主從同步內部實現中的一環。RDB有他的不足,就是一旦資料庫出現問題,那麼我們的RDB文件中保存的數據並不是全新的,從上次RDB文件生成到Redis停機這段時間的數據全部丟掉了。在某些業務下,這是可以忍受的。
2)AOF日誌
AOF日誌的全稱是append only file,它是一個追加寫入的日誌文件。與一般資料庫的binlog不同的是,AOF文件是可識別的純文本,它的內容就是一個個的Redis標准命令。只有那些會導致數據發生修改的命令才會追加到AOF文件。每一條修改數據的命令都生成一條日誌,AOF文件會越來越大,所以Redis又提供了一個功能,叫做AOF rewrite。其功能就是重新生成一份AOF文件,新的AOF文件中一條記錄的操作只會有一次,而不像一份老文件那樣,可能記錄了對同一個值的多次操作。其生成過程和RDB類似,也是fork一個進程,直接遍歷數據,寫入新的AOF臨時文件。在寫入新文件的過程中,所有的寫操作日誌還是會寫到原來老的AOF文件中,同時還會記錄在內存緩沖區中。當重完操作完成後,會將所有緩沖區中的日誌一次性寫入到臨時文件中。然後調用原子性的rename命令用新的AOF文件取代老的AOF文件。
AOF是一個寫文件操作,其目的是將操作日誌寫到磁碟上,所以它也同樣會遇到我們上面說的寫操作的流程。在Redis中對AOF調用write寫入後,通過appendfsync選項來控制調用fsync將其寫到磁碟上的時間,下面appendfsync的三個設置項,安全強度逐漸變強。
appendfsync no 當設置appendfsync為no的時候,Redis不會主動調用fsync去將AOF日誌內容同步到磁碟,所以這一切就完全依賴於操作系統的調試了。對大多數Linux操作系統,是每30秒進行一次fsync,將緩沖區中的數據寫到磁碟上。
appendfsync everysec 當設置appendfsync為everysec的時候,Redis會默認每隔一秒進行一次fsync調用,將緩沖區中的數據寫到磁碟。但是當這一次的fsync調用時長超過1秒時。Redis會採取延遲fsync的策略,再等一秒鍾。也就是在兩秒後再進行fsync,這一次的fsync就不管會執行多長時間都會進行。這時候由於在fsync時文件描述符會被阻塞,所以當前的寫操作就會阻塞。所以結論就是,在絕大多數情況下,Redis會每隔一秒進行一次fsync。在最壞的情況下,兩秒鍾會進行一次fsync操作。這一操作在大多數資料庫系統中被稱為group commit,就是組合多次寫操作的數據,一次性將日誌寫到磁碟。
appednfsync always 當設置appendfsync為always時,每一次寫操作都會調用一次fsync,這時數據是最安全的,當然,由於每次都會執行fsync,所以其性能也會受到影響。
對於一般性的業務需求,建議使用RDB的方式進行持久化,原因是RDB的開銷並相比AOF日誌要低很多,對於那些無法忍數據丟失的應用,建議使用AOF日誌。
4、集群管理的不同
Memcached是全內存的數據緩沖系統,Redis雖然支持數據的持久化,但是全內存畢竟才是其高性能的本質。作為基於內存的存儲系統來說,機器物理內存的大小就是系統能夠容納的最大數據量。如果需要處理的數據量超過了單台機器的物理內存大小,就需要構建分布式集群來擴展存儲能力。
Memcached本身並不支持分布式,因此只能在客戶端通過像一致性哈希這樣的分布式演算法來實現Memcached的分布式存儲。下圖給出了Memcached的分布式存儲實現架構。當客戶端向Memcached集群發送數據之前,首先會通過內置的分布式演算法計算出該條數據的目標節點,然後數據會直接發送到該節點上存儲。但客戶端查詢數據時,同樣要計算出查詢數據所在的節點,然後直接向該節點發送查詢請求以獲取數據。
相較於Memcached只能採用客戶端實現分布式存儲,Redis更偏向於在伺服器端構建分布式存儲。最新版本的Redis已經支持了分布式存儲功能。Redis Cluster是一個實現了分布式且允許單點故障的Redis高級版本,它沒有中心節點,具有線性可伸縮的功能。下圖給出Redis Cluster的分布式存儲架構,其中節點與節點之間通過二進制協議進行通信,節點與客戶端之間通過ascii協議進行通信。在數據的放置策略上,Redis Cluster將整個key的數值域分成4096個哈希槽,每個節點上可以存儲一個或多個哈希槽,也就是說當前Redis Cluster支持的最大節點數就是4096。Redis Cluster使用的分布式演算法也很簡單:crc16( key ) % HASH_SLOTS_NUMBER。
為了保證單點故障下的數據可用性,Redis Cluster引入了Master節點和Slave節點。在Redis Cluster中,每個Master節點都會有對應的兩個用於冗餘的Slave節點。這樣在整個集群中,任意兩個節點的宕機都不會導致數據的不可用。當Master節點退出後,集群會自動選擇一個Slave節點成為新的Master節點。
發布於 2017-02-09
241 條評論
分享
收藏感謝收起
張光宇
none
10 人贊同了該回答
先說Redis的特點
Redis 有各種豐富的數據結構,如果和業務對口,用起來會非常方便(比如Timeline, JobQueue等場合)。
Redis支持數據持久化,雖然無法像資料庫那樣完善,但對於互聯網這種場景,完全夠用了。
Memcached的特點
純粹的cache,意思是一般只會expire cache而不會修改(或append)cache。區別就在於,你fetch的時候總會考慮cache missing的情況。
作為cache時,關於性能比較
兩者都經過了良好的設計,在0~300個client的並發GET/SET下,throughput 都在保持在10萬/秒以上。
memcached的性能比redis要好很多(數倍),這也比較容易理解。但往往瓶頸會在client或者網路等地方。
這里是benchmark
❿ 什麼是分布式緩存
分布式緩存能夠處理大量的動態數據,因此比較適合應用在Web 2.0時代中的社交網站等需要由用戶生成內容的場景。從本地緩存擴展到分布式緩存後,關注重點從CPU、內存、緩存之間的數據傳輸速度差異也擴展到了業務系統、資料庫、分布式緩存之間的數據傳輸速度差異。
常用的分布式緩存包括Redis和Memcached。
Memcached
Memcached是一個高性能的分布式內存對象緩存系統,用於動態Web應用以減輕資料庫負載。Memcached通過在內存中緩存數據和對象來減少讀取資料庫的次數,從而提高動態、資料庫驅動網站的速度。
特點:哈希方式存儲;全內存操作;簡單文本協議進行數據通信;只操作字元型數據;集群由應用進行控制,採用一致性哈希演算法。
限制性:數據保存在內存當中的,一旦機器重啟,數據會全部丟失;只能操作字元型數據,數據類型貧乏;以root許可權運行,而且Memcached本身沒有任何許可權管理和認證功能,安全性不足;能存儲的數據長度有限,最大鍵長250個字元,儲存數據不能超過1M。
Redis
Redis是一個開源的使用ANSI C語言編寫、支持網路、可基於內存亦可持久化的日誌型、Key-Value資料庫,並提供多種語言的API。
特點:
Redis支持的數據類型包括:字元串、string、hash、set、sortedset、list;Redis實現持久化的方式:定期將內存快照寫入磁碟;寫日誌;Redis支持主從同步。
限制性:單核運行,在存儲大數據的時候性能會有降低;不是全內存操作;主從復制是全量復制,對實際的系統運營造成了一定負擔。