緩存雪崩
⑴ redis 多個請求同時操作hash會緩存雪崩嗎
MongoDB不多說,不是一個類型的東西,Redis相對Memcached來說功能和特性上的優勢已經很明顯了。而對於性能,Redis作者的說法是平均到單個核上的性能,在單條數據不大的情況下Redis更好。為什麼這么說呢,理由就是Redis是單線程運行的。
⑵ 該怎麼解決 Redis 緩存穿透和緩存雪崩問題
緩存雪崩: 由於緩存層承載著大量請求,有效地 保護了存儲層,但是如果緩存層由於某些原因不能提供服務,比如 Redis 節點掛掉了,熱點 key 全部失效了,在這些情況下,所有的請求都會直接請求到資料庫,可能會造成資料庫宕機的情況。
預防和解決緩存雪崩問題,可以從以下三個方面進行著手:
1、使用 Redis 高可用架構:使用 Redis 集群來保證 Redis 服務不會掛掉
2、緩存時間不一致: 給緩存的失效時間,加上一個隨機值,避免集體失效
3、限流降級策略:有一定的備案,比如個性推薦服務不可用了,換成熱點數據推薦服務
緩存穿透: 緩存穿透是指查詢一個根本不存在的數據,這樣的數據肯定不在緩存中,這會導致請求全部落到資料庫上,有可能出現資料庫宕機的情況。
預防和解決緩存穿透問題,可以考慮以下兩種方法:
1、緩存空對象: 將空值緩存起來,但是這樣就有一個問題,大量無效的空值將佔用空間,非常浪費。
2、布隆過濾器攔截: 將所有可能的查詢key 先映射到布隆過濾器中,查詢時先判斷key是否存在布隆過濾器中,存在才繼續向下執行,如果不存在,則直接返回。布隆過濾器有一定的誤判,所以需要你的業務允許一定的容錯性。
⑶ 面試時問到一個問題,什麼是緩存雪崩
緩存系統不得不考慮的另一個問題是緩存穿透與失效時的雪崩效應。緩存穿透是指查詢一個一定不存在的數據,由於緩存是不命中時被動寫的,並且出於容錯考慮,如果從存儲層查不到數據則不寫入緩存,這將導致這個存在的數據每次請求都要到存儲層去查詢,失去了緩存的意義。
⑷ 什麼是緩存穿透
緩存穿透又稱緩存擊穿,是指在高並發場景下緩存中(包括本地緩存和Redis緩存)的某一個Key被高並發的訪問沒有命中,此時回去資料庫中訪問數據,導致資料庫並發的執行大量查詢操作,對DB造成巨大的壓力。
⑸ 什麼是緩存穿透有哪些解決辦法
緩存穿透:指查詢一個不存在的數據,由於緩存是不命中時需要從資料庫查詢,查不到數據則不寫入緩存,這將導致這個不存在的數據每次請求都要到資料庫去查詢,造成緩存穿透。
解決方案:最簡單的方法是如果一個查詢返回的數據為空(不管是數據不存在,還是系統故障),我們就把這個空結果進行緩存,但它的過期時間會很短,最長不超過五分鍾。
一些不合法的參數請求直接拋出異常信息返回給客戶端。比如查詢的資料庫 id 不能小於 0、傳入的郵箱格式不對的時候直接返回錯誤消息給客戶端等
⑹ 緩存穿透有哪些解決辦法
具體有哪些解決辦法?
最基本的就是首先做好參數校驗,一些不合法的參數請求直接拋出異常信息返回給客戶端。比如查詢的資料庫 id 不能小於 0、傳入的郵箱格式不對的時候直接返回錯誤消息給客戶端等等。
1)緩存無效 key : 如果緩存和資料庫都查不到某個 key 的數據就寫一個到 redis 中去並設置過期時間,具體命令如下:SET key value EX 10086。這種方式可以解決請求的 key 變化不頻繁的情況,如何黑客惡意攻擊,每次構建的不同的請求key,會導致 redis 中緩存大量無效的 key 。很明顯,這種方案並不能從根本上解決此問題。如果非要用這種方式來解決穿透問題的話,盡量將無效的 key 的過期時間設置短一點比如 1 分鍾。另外,一般情況下我們是這樣設計 key 的: 表名:列名:主鍵名:主鍵值。
2)布隆過濾器:布隆過濾器是一個非常神奇的數據結構,通過它我們可以非常方便地判斷一個給定數據是否存在與海量數據中。我們需要的就是判斷 key 是否合法,有沒有感覺布隆過濾器就是我們想要找的那個「人」。具體是這樣做的:把所有可能存在的請求的值都存放在布隆過濾器中,當用戶請求過來,我會先判斷用戶發來的請求的值是否存在於布隆過濾器中。不存在的話,直接返回請求參數錯誤信息給客戶端,存在的話才會走下面的流程。總結一下就是下面這張圖(這張圖片不是我畫的,為了省事直接在網上找的):
⑺ 緩存雪崩怎麼解決
你的緩存崩潰掉了,說明你的機器硬碟空間太少了,應該清理一下硬碟啊,讓你的機器變快一點。
⑻ 緩存穿透和緩存擊穿有什麼區別
兩者計算的功能是不同的,因為它們所需的能量不同。
前者要達到的需求是要穿透這個設備,而另一個是需要完成擊穿,通過正常運行。