當前位置:首頁 » 文件管理 » oscache緩存的使用

oscache緩存的使用

發布時間: 2023-11-17 08:59:50

java幾種緩存技術介紹說明

1、TreeCache / JBossCache

JBossCache是一個復制的事務處理緩存,它允許你緩存企業級應用數據來更好的改善性能。緩存數據被自動復制,讓你輕松進行JBoss伺服器之間 的集群工作。JBossCache能夠通過JBoss應用服務或其他J2EE容器來運行一個MBean服務,當然,它也能獨立運行。

2、WhirlyCache

Whirlycache是一個快速的、可配置的、存在於內存中的對象的緩存。它能夠通過緩存對象來加快網站或應用程序的速度,否則就必須通過查詢資料庫或其他代價較高的處理程序來建立。

3、SwarmCache

SwarmCache是一個簡單且有效的分布式緩存,它使用IP multicast與同一個區域網的其他主機進行通訊,是特別為集群和數據驅動web應用程序而設計的。SwarmCache能夠讓典型的讀操作大大超過寫操作的這類應用提供更好的性能支持。

4、JCache

JCache是個開源程序,正在努力成為JSR-107開源規范,JSR-107規范已經很多年沒改變了。這個版本仍然是構建在最初的功能定義上。

5、ShiftOne

ShiftOne Java Object Cache是一個執行一系列嚴格的對象緩存策略的Java lib,就像一個輕量級的配置緩存工作狀態的框架。

Ⅱ tomcat 集群用什麼緩存更好,oscache或memcache

你說的OSCache是進程級緩存,說白了就是利用JVM本身的內存來保存一些對象.

Memcache是利用別的機器的緩存,利用網路來溝通.

個人建議是看你的應用了.
OScache本身提供了廣播和JMS等方式來進行緩存失效通知,這種方式的問題就是....

A和B兩殲大個Tomcat,A機里的一個KEY被更舉慧新了,通知了B,B把這個KEY失效了...結果就是B不能享用到A已經做過的事...還要再從資料庫或者其他地方重新讀取數據放到緩存.
如果這個操作很費資源那就不合算了.

Memcache可以避免這個問題,但同時也產生另正改答外的問題.由於memcache是由網路來溝通的,所以存在著序例化和反序例化還有網路IO等操作的時間.所以讀取單個KEY時會比從OScache里拿要慢一些.

Ⅲ Java的應用緩存cache如何入門

Java的應用緩存cache入門:

  1. java常用的緩存有:ehcache, oscache,jcache,這些cache都是單機的,即存在本機的內存中,另外分布式的cache我用過memcache,它被獨立部署在一台伺服器上,可以實現多個客戶端共用緩存;

  2. 一般用到緩存的場景:

1.在處理並發請求,需要及時響應的。

2.加快系統響應速度。舉個例子:比如購物網站有 售賣物品的排行榜,這種數據都是由資料庫中N多表關聯查詢排序得到的,那麼就可以存在緩存當中,當頁面請求查看排行榜時直接取緩存中的數據。後台定時任務根據一定的時間間隔計算好排行結果,再替換到當前緩存中。

這就是一個簡單的緩存應用示例。

Ⅳ 常用的緩存技術

第一章 常用的緩存技術
1、常見的兩種緩存

本地緩存:不需要序列化,速度快,緩存的數量與大小受限於本機內存
分布式緩存:需要序列化,速度相較於本地緩存較慢,但是理論上緩存的數量與大小無限(因為緩存機器可以不斷擴展)
2、本地緩存

Google guava cache:當下最好用的本地緩存
Ehcache:spring默認集成的一個緩存,以spring cache的底層緩存實現類形式去操作緩存的話,非常方便,但是欠缺靈活,如果想要靈活使用,還是要單獨使用Ehcache
Oscache:最經典簡單的頁面緩存
3、分布式緩存

memcached:分布式緩存的標配
Redis:新一代的分布式緩存,有替代memcached的趨勢
3.1、memcached

經典的一致性hash演算法
基於slab的內存模型有效防止內存碎片的產生(但同時也需要估計好啟動參數,否則會浪費很多的內存)
集群中機器之間互不通信(相較於Jboss cache等集群中機器之間的相互通信的緩存,速度更快<--因為少了同步更新緩存的開銷,且更適合於大型分布式系統中使用)
使用方便(這一點是相較於Redis在構建客戶端的時候而言的,盡管redis的使用也不困難)
很專一(專做緩存,這一點也是相較於Redis而言的)
3.2、Redis

可以存儲復雜的數據結構(5種)
strings-->即簡單的key-value,就是memcached可以存儲的唯一的一種形式,接下來的四種是memcached不能直接存儲的四種格式(當然理論上可以先將下面的一些數據結構中的東西封裝成對象,然後存入memcached,但是不推薦將大對象存入memcached,因為memcached的單一value的最大存儲為1M,可能即使採用了壓縮演算法也不夠,即使夠,可能存取的效率也不高,而redis的value最大為1G)
hashs-->看做hashTable
lists-->看做LinkedList
sets-->看做hashSet,事實上底層是一個hashTable
sorted sets-->底層是一個skipList
有兩種方式可以對緩存數據進行持久化
RDB
AOF
事件調度
發布訂閱等
4、集成緩存

專指spring cache,spring cache自己繼承了ehcache作為了緩存的實現類,我們也可以使用guava cache、memcached、redis自己來實現spring cache的底層。當然,spring cache可以根據實現類來將緩存存在本地還是存在遠程機器上。

5、頁面緩存

在使用jsp的時候,我們會將一些復雜的頁面使用Oscache進行頁面緩存,使用非常簡單,就是幾個標簽的事兒;但是,現在一般的企業,前台都會使用velocity、freemaker這兩種模板引擎,本身速度就已經很快了,頁面緩存使用的也就很少了。

總結:

在實際生產中,我們通常會使用guava cache做本地緩存+redis做分布式緩存+spring cache就集成緩存(底層使用redis來實現)的形式
guava cache使用在更快的獲取緩存數據,同時緩存的數據量並不大的情況
spring cache集成緩存是為了簡單便捷的去使用緩存(以註解的方式即可),使用redis做其實現類是為了可以存更多的數據在機器上
redis緩存單獨使用是為了彌補spring cache集成緩存的不靈活
就我個人而言,如果需要使用分布式緩存,那麼首先redis是必選的,因為在實際開發中,我們會緩存各種各樣的數據類型,在使用了redis的同時,memcached就完全可以舍棄了,但是現在還有很多公司在同時使用memcached和redis兩種緩存。

Ⅳ java如何將頁面每次請求獲得的數據緩存起來供使用

?閼飧齪誦牡牡胤劍?褪莂ction這兒不去查資料庫,而拿到緩存的數據再直接返回到前台嘛。核心代碼邏輯就是:longobsoleteTime=1天;
List
list=cache.get(abc,
obsoleteTime);if(list==null){
list=manager.search(..);
這樣的緩存策略很多的啊。比如oscache就可以達到要求,而且用起來很簡單,只要一個jar,自己抽象一個cache的介面,套上去,就能用了。

Ⅵ hibernate緩存的詳細配置

很多人對二級緩存都不太了解,或者是有錯誤的認識,我一直想寫一篇文章介紹一下hibernate的二級緩存的,今天終於忍不住了。
我的經驗主要來自hibernate2.1版本,基本原理和3.0、3.1是一樣的,請原諒我的頑固不化。

hibernate的session提供了一級緩存,每個session,對同一個id進行兩次load,不會發送兩條sql給資料庫,但是session關閉的時候,一級緩存就失效了。

二級緩存是SessionFactory級別的全局緩存,它底下可以使用不同的緩存類庫,比如ehcache、oscache等,需要設置hibernate.cache.provider_class,我們這里用ehcache,在2.1中就是
hibernate.cache.provider_class=net.sf.hibernate.cache.EhCacheProvider
如果使用查詢緩存,加上
hibernate.cache.use_query_cache=true

緩存可以簡單的看成一個Map,通過key在緩存裡面找value。

Class的緩存
對於一條記錄,也就是一個PO來說,是根據ID來找的,緩存的key就是ID,value是POJO。無論list,load還是iterate,只要讀出一個對象,都會填充緩存。但是list不會使用緩存,而iterate會先取資料庫select id出來,然後一個id一個id的load,如果在緩存裡面有,就從緩存取,沒有的話就去資料庫load。假設是讀寫緩存,需要設置:
<cache usage="read-write"/>
如果你使用的二級緩存實現是ehcache的話,需要配置ehcache.xml
<cache name="com.xxx.pojo.Foo" maxElementsInMemory="500" eternal="false" timeToLiveSeconds="7200" timeToIdleSeconds="3600" overflowToDisk="true" />
其中eternal表示緩存是不是永遠不超時,timeToLiveSeconds是緩存中每個元素(這里也就是一個POJO)的超時時間,如果eternal="false",超過指定的時間,這個元素就被移走了。timeToIdleSeconds是發呆時間,是可選的。當往緩存裡面put的元素超過500個時,如果overflowToDisk="true",就會把緩存中的部分數據保存在硬碟上的臨時文件裡面。
每個需要緩存的class都要這樣配置。如果你沒有配置,hibernate會在啟動的時候警告你,然後使用defaultCache的配置,這樣多個class會共享一個配置。
當某個ID通過hibernate修改時,hibernate會知道,於是移除緩存。
這樣大家可能會想,同樣的查詢條件,第一次先list,第二次再iterate,就可以使用到緩存了。實際上這是很難的,因為你無法判斷什麼時候是第一次,而且每次查詢的條件通常是不一樣的,假如資料庫裡面有100條記錄,id從1到100,第一次list的時候出了前50個id,第二次iterate的時候卻查詢到30至70號id,那麼30-50是從緩存裡面取的,51到70是從資料庫取的,共發送1+20條sql。所以我一直認為iterate沒有什麼用,總是會有1+N的問題。
(題外話:有說法說大型查詢用list會把整個結果集裝入內存,很慢,而iterate只select id比較好,但是大型查詢總是要分頁查的,誰也不會真的把整個結果集裝進來,假如一頁20條的話,iterate共需要執行21條語句,list雖然選擇若干欄位,比iterate第一條select id語句慢一些,但只有一條語句,不裝入整個結果集hibernate還會根據資料庫方言做優化,比如使用mysql的limit,整體看來應該還是list快。)
如果想要對list或者iterate查詢的結果緩存,就要用到查詢緩存了

查詢緩存
首先需要配置hibernate.cache.use_query_cache=true
如果用ehcache,配置ehcache.xml,注意hibernate3.0以後不是net.sf的包名了
<cache name="net.sf.hibernate.cache.StandardQueryCache"
maxElementsInMemory="50" eternal="false" timeToIdleSeconds="3600"
timeToLiveSeconds="7200" overflowToDisk="true"/>
<cache name="net.sf.hibernate.cache.UpdateTimestampsCache"
maxElementsInMemory="5000" eternal="true" overflowToDisk="true"/>
然後
query.setCacheable(true);//激活查詢緩存
query.setCacheRegion("myCacheRegion");//指定要使用的cacheRegion,可選
第二行指定要使用的cacheRegion是myCacheRegion,即你可以給每個查詢緩存做一個單獨的配置,使用setCacheRegion來做這個指定,需要在ehcache.xml裡面配置它:
<cache name="myCacheRegion" maxElementsInMemory="10" eternal="false" timeToIdleSeconds="3600" timeToLiveSeconds="7200" overflowToDisk="true" />
如果省略第二行,不設置cacheRegion的話,那麼會使用上面提到的標准查詢緩存的配置,也就是net.sf.hibernate.cache.StandardQueryCache

對於查詢緩存來說,緩存的key是根據hql生成的sql,再加上參數,分頁等信息(可以通過日誌輸出看到,不過它的輸出不是很可讀,最好改一下它的代碼)。
比如hql:
from Cat c where c.name like ?
生成大致如下的sql:
select * from cat c where c.name like ?
參數是"tiger%",那麼查詢緩存的key*大約*是這樣的字元串(我是憑記憶寫的,並不精確,不過看了也該明白了):
select * from cat c where c.name like ? , parameter:tiger%
這樣,保證了同樣的查詢、同樣的參數等條件下具有一樣的key。
現在說說緩存的value,如果是list方式的話,value在這里並不是整個結果集,而是查詢出來的這一串ID。也就是說,不管是list方法還是iterate方法,第一次查詢的時候,它們的查詢方式很它們平時的方式是一樣的,list執行一條sql,iterate執行1+N條,多出來的行為是它們填充了緩存。但是到同樣條件第二次查詢的時候,就都和iterate的行為一樣了,根據緩存的key去緩存裡面查到了value,value是一串id,然後在到class的緩存裡面去一個一個的load出來。這樣做是為了節約內存。
可以看出來,查詢緩存需要打開相關類的class緩存。list和iterate方法第一次執行的時候,都是既填充查詢緩存又填充class緩存的。
這里還有一個很容易被忽視的重要問題,即打開查詢緩存以後,即使是list方法也可能遇到1+N的問題!相同條件第一次list的時候,因為查詢緩存中找不到,不管class緩存是否存在數據,總是發送一條sql語句到資料庫獲取全部數據,然後填充查詢緩存和class緩存。但是第二次執行的時候,問題就來了,如果你的class緩存的超時時間比較短,現在class緩存都超時了,但是查詢緩存還在,那麼list方法在獲取id串以後,將會一個一個去資料庫load!因此,class緩存的超時時間一定不能短於查詢緩存設置的超時時間!如果還設置了發呆時間的話,保證class緩存的發呆時間也大於查詢的緩存的生存時間。這里還有其他情況,比如class緩存被程序強制evict了,這種情況就請自己注意了。

另外,如果hql查詢包含select字句,那麼查詢緩存裡面的value就是整個結果集了。

當hibernate更新資料庫的時候,它怎麼知道更新哪些查詢緩存呢?
hibernate在一個地方維護每個表的最後更新時間,其實也就是放在上面net.sf.hibernate.cache.UpdateTimestampsCache所指定的緩存配置裡面。
當通過hibernate更新的時候,hibernate會知道這次更新影響了哪些表。然後它更新這些表的最後更新時間。每個緩存都有一個生成時間和這個緩存所查詢的表,當hibernate查詢一個緩存是否存在的時候,如果緩存存在,它還要取出緩存的生成時間和這個緩存所查詢的表,然後去查找這些表的最後更新時間,如果有一個表在生成時間後更新過了,那麼這個緩存是無效的。
可以看出,只要更新過一個表,那麼凡是涉及到這個表的查詢緩存就失效了,因此查詢緩存的命中率可能會比較低。

Collection緩存
需要在hbm的collection裡面設置
<cache usage="read-write"/>
假如class是Cat,collection叫children,那麼ehcache裡面配置
<cache name="com.xxx.pojo.Cat.children"
maxElementsInMemory="20" eternal="false" timeToIdleSeconds="3600" timeToLiveSeconds="7200"
overflowToDisk="true" />
Collection的緩存和前面查詢緩存的list一樣,也是只保持一串id,但它不會因為這個表更新過就失效,一個collection緩存僅在這個collection裡面的元素有增刪時才失效。
這樣有一個問題,如果你的collection是根據某個欄位排序的,當其中一個元素更新了該欄位時,導致順序改變時,collection緩存裡面的順序沒有做更新。

緩存策略
只讀緩存(read-only):沒有什麼好說的
讀/寫緩存(read-write):程序可能要的更新數據
不嚴格的讀/寫緩存(nonstrict-read-write):需要更新數據,但是兩個事務更新同一條記錄的可能性很小,性能比讀寫緩存好
事務緩存(transactional):緩存支持事務,發生異常的時候,緩存也能夠回滾,只支持jta環境,這個我沒有怎麼研究過

讀寫緩存和不嚴格讀寫緩存在實現上的區別在於,讀寫緩存更新緩存的時候會把緩存裡面的數據換成一個鎖,其他事務如果去取相應的緩存數據,發現被鎖住了,然後就直接取資料庫查詢。
在hibernate2.1的ehcache實現中,如果鎖住部分緩存的事務發生了異常,那麼緩存會一直被鎖住,直到60秒後超時。
不嚴格讀寫緩存不鎖定緩存中的數據。

使用二級緩存的前置條件
你的hibernate程序對資料庫有獨占的寫訪問權,其他的進程更新了資料庫,hibernate是不可能知道的。你操作資料庫必需直接通過hibernate,如果你調用存儲過程,或者自己使用jdbc更新資料庫,hibernate也是不知道的。hibernate3.0的大批量更新和刪除是不更新二級緩存的,但是據說3.1已經解決了這個問題。
這個限制相當的棘手,有時候hibernate做批量更新、刪除很慢,但是你卻不能自己寫jdbc來優化,很郁悶吧。
SessionFactory也提供了移除緩存的方法,你一定要自己寫一些JDBC的話,可以調用這些方法移除緩存,這些方法是:
void evict(Class persistentClass)
Evict all entries from the second-level cache.
void evict(Class persistentClass, Serializable id)
Evict an entry from the second-level cache.
void evictCollection(String roleName)
Evict all entries from the second-level cache.
void evictCollection(String roleName, Serializable id)
Evict an entry from the second-level cache.
void evictQueries()
Evict any query result sets cached in the default query cache region.
void evictQueries(String cacheRegion)
Evict any query result sets cached in the named query cache region.
不過我不建議這樣做,因為這樣很難維護。比如你現在用JDBC批量更新了某個表,有3個查詢緩存會用到這個表,用evictQueries(String cacheRegion)移除了3個查詢緩存,然後用evict(Class persistentClass)移除了class緩存,看上去好像完整了。不過哪天你添加了一個相關查詢緩存,可能會忘記更新這里的移除代碼。如果你的jdbc代碼到處都是,在你添加一個查詢緩存的時候,還知道其他什麼地方也要做相應的改動嗎?

----------------------------------------------------

總結:
不要想當然的以為緩存一定能提高性能,僅僅在你能夠駕馭它並且條件合適的情況下才是這樣的。hibernate的二級緩存限制還是比較多的,不方便用jdbc可能會大大的降低更新性能。在不了解原理的情況下亂用,可能會有1+N的問題。不當的使用還可能導致讀出臟數據。
如果受不了hibernate的諸多限制,那麼還是自己在應用程序的層面上做緩存吧。
在越高的層面上做緩存,效果就會越好。就好像盡管磁碟有緩存,資料庫還是要實現自己的緩存,盡管資料庫有緩存,咱們的應用程序還是要做緩存。因為底層的緩存它並不知道高層要用這些數據干什麼,只能做的比較通用,而高層可以有針對性的實現緩存,所以在更高的級別上做緩存,效果也要好些吧。

熱點內容
騰訊雲伺服器怎麼購買 發布:2025-01-22 16:45:01 瀏覽:628
天貓怎麼上傳視頻 發布:2025-01-22 16:40:02 瀏覽:725
安卓如何把抖音評論換成黑色 發布:2025-01-22 16:30:57 瀏覽:700
連接池Java 發布:2025-01-22 16:28:27 瀏覽:258
搶杠演算法 發布:2025-01-22 16:15:02 瀏覽:72
圖片伺服器ftp 發布:2025-01-22 15:52:33 瀏覽:507
sql打開bak文件 發布:2025-01-22 15:47:32 瀏覽:107
opengl伺服器源碼 發布:2025-01-22 15:40:02 瀏覽:909
python部署服務 發布:2025-01-22 15:38:46 瀏覽:283
壓縮機卡裝 發布:2025-01-22 15:37:04 瀏覽:447