當前位置:首頁 » 文件管理 » 壓縮感測

壓縮感測

發布時間: 2022-01-22 18:08:23

㈠ 色域映射,色域壓縮是什麼意思相對壓縮和感知壓縮有什麼區別

壓縮感知,又稱壓縮采樣,壓縮感測。
它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist 采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。
壓縮感知理論一經提出,就引起學術界和工業的界的廣泛關注。
他在資訊理論、圖像處理、地球科學、光學/微波成像、模式識別、無線通信、大氣、地質等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。
壓縮感知理論的核心思想主要包括兩點。
第一個是信號的稀疏結構。
傳統的Shannon 信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。
但是,現實生活中很多廣受關注的信號本身具有一些結構特點。
相對於帶寬信息的自由度,這些結構特點是由信號的更小的一部分自由度所決定。
換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。
所以,在這種意義上,這種信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。
另外一點是不相關特性。
稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓縮成較小的樣本數據來完成。
理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。
這些波形要求是與信號所在的稀疏空間不相關的。
壓縮感知壓縮感知方法拋棄了當前信號采樣中的冗餘信息。
它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。
這里恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。

㈡ 壓縮感測的原理

核心思想是將壓縮與采樣合並進行,首先採集信號的非自適應線性投影 (測量值),然後根據相應重構演算法由測量值重構原始信號。壓縮感測的優點在於信號的投影測量數據量遠遠小於傳統采樣方法所獲的數據量,突破了香農采樣定理的瓶頸,使得高解析度信號的採集成為可能。
信號的稀疏表示就是將信號投影到正交變換基時,絕大部分變換系數的絕對值很小,所得到的變換向量是稀疏或者近似稀疏的,以將其看作原始信號的一種簡潔表達,這是壓縮感測的先驗條件,即信號必須在某種變換下可以稀疏表示。 通常變換基可以根據信號本身的特點靈活選取, 常用的有離散餘弦變換基、快速傅里葉變換基、離散小波變換基、Curvelet基、Gabor 基 以及冗餘字典等。 在編碼測量中, 首先選擇穩定的投影矩陣,為了確保信號的線性投影能夠保持信號的原始結構, 投影矩陣必須滿足約束等距性 (Restricted isometry property, RIP)條件, 然後通過原始信號與測量矩陣的乘積獲得原始信號的線性投影測量。最後,運用重構演算法由測量值及投影矩陣重構原始信號。信號重構過程一般轉換為一個最小L0范數的優化問題,求解方法主要有最小L1 范數法、匹配追蹤系列演算法、最小全變分方法、迭代閾值演算法等。
采樣定理(又稱取樣定理、抽樣定理)是采樣帶限信號過程所遵循的規律,1928年由美國電信工程師H.奈奎斯特首先提出來的,因此稱為奈奎斯特采樣定理。1948年資訊理論的創始人C.E.香農對這一定理加以明確說明並正式作為定理引用,因此在許多文獻中又稱為香農采樣定理。該理論支配著幾乎所有的信號/圖像等的獲取、處理、存儲、傳輸等,即:采樣率不小於最高頻率的兩倍(該采樣率稱作Nyquist采樣率)。該理論指導下的信息獲取、存儲、融合、處理及傳輸等成為信息領域進一步發展的主要瓶頸之一,主要表現在兩個方面:
(1)數據獲取和處理方面。對於單個(幅)信號/圖像,在許多實際應用中(例如,超寬頻通信,超寬頻信號處理,THz成像,核磁共振,空間探測,等等), Nyquist采樣硬體成本昂貴、獲取效率低下,在某些情況甚至無法實現。為突破Nyquist采樣定理的限制,已發展了一些理論,其中典型的例子為Landau理論, Papoulis等的非均勻采樣理論,M. Vetterli等的 finite rate of innovation信號采樣理論,等。對於多道(或多模式)數據(例如,感測器網路,波束合成,無線通信,空間探測,等),硬體成本昂貴、信息冗餘及有效信息提取的效率低下,等等。
(2)數據存儲和傳輸方面。通常的做法是先按照Nyquist方式獲取數據,然後將獲得的數據進行壓縮,最後將壓縮後的數據進行存儲或傳輸,顯然,這樣的方式造成很大程度的資源浪費。另外,為保證信息的安全傳輸,通常的加密技術是用某種方式對信號進行編碼,這給信息的安全傳輸和接受帶來一定程度的麻煩。
綜上所述:Nyquist-Shannon理論並不是唯一、最優的采樣理論,研究如何突破以Nyquist-Shannon采樣理論為支撐的信息獲取、處理、融合、存儲及傳輸等的方式是推動信息領域進一步往前發展的關鍵。眾所周知:(1)Nyquist采樣率是信號精確復原的充分條件,但絕不是必要條件。(2)除帶寬可作為先驗信息外,實際應用中的大多數信號/圖像中擁有大量的structure。由貝葉斯理論可知:利用該structure信息可大大降低數據採集量。(3) Johnson-Lindenstrauss理論表明:以overwhelming性概率,K+1次測量足以精確復原N維空間的K-稀疏信號。
由D. Donoho(美國科學院院士)、E. Candes(Ridgelet, Curvelet創始人)及華裔科學家T. Tao(2006年菲爾茲獎獲得者,2008年被評為世界上最聰明的科學家)等人提出了一種新的信息獲取指導理論,即,壓縮感知或壓縮感測(Compressive Sensing(CS) or Compressed Sensing、Compressed Sampling)。該理論指出:對可壓縮的信號可通過遠低於Nyquist標準的方式進行采樣數據,仍能夠精確地恢復出原始信號。該理論一經提出,就在資訊理論、信號/圖像處理、醫療成像、模式識別、地質勘探、光學/雷達成像、無線通信等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。CS理論的研究尚屬於起步階段,但已表現出了強大的生命力,並已發展了分布CS理論(Baron等提出),1-BIT CS理論(Baraniuk等提出),Bayesian CS理論(Carin等提出),無限維CS理論(Elad等提出),變形CS理論(Meyer等提出),等等,已成為數學領域和工程應用領域的一大研究熱點。

㈢ 壓縮感測的應用領域

壓縮感測技術是一種抽象的數學概念,而不是具體的操作方案,它可以應用到成像以外的許多領域。以下只是其中幾個例子:
磁共振成像(MRI):在醫學上,磁共振的工作原理是做許多次(但次數仍是有限的)測量(基本上就是對人體圖像進行離散拉東變換(也叫X光變換)),再對數據進行加工來生成圖像(在這里就是人體內水的密度分布圖像)。由於測量次數必須很多,整個過程對患者來說太過漫長。壓縮感測技術可以顯著減少測量次數,加快成像(甚至有可能做到實時成像,也就是核磁共振的視頻而非靜態圖像)。此外我們還可以以測量次數換圖像質量,用與原來一樣的測量次數可以得到好得多的圖像解析度。
天文學:許多天文現象(如脈沖星)具有多種頻率震盪特性,使其在頻域上是高度稀疏也就是可壓縮的。壓縮感測技術將使我們能夠在時域內測量這些現象(即記錄望遠鏡數據)並能夠精確重建原始信號,即使原始數據不完整或者干擾嚴重(原因可能是天氣不佳,上機時間不夠,或者就是因為地球自傳使我們得不到全時序的數據)。
線性編碼:壓縮感測技術提供了一個簡單的方法,讓多個傳送者可以將其信號帶糾錯地合並傳送,這樣即使輸出信號的一大部分丟失或毀壞,仍然可以恢復出原始信號。例如,可以用任意一種線性編碼把1000比特信息編碼進一個3000比特的流;那麼,即使其中300位被(惡意)毀壞,原始信息也能完全無損失地完美重建。這是因為壓縮感測技術可以把破壞動作本身看作一個稀疏的信號(只集中在3000比特中的300位)。

㈣ 壓縮感知的主要應用

認知無線電方向:寬頻譜感知技術是認識無線電應用中一個難點和重點。它通過快速尋找監測頻段中沒有利用的無線頻譜,從而為認知無線電用戶提供頻譜接入機會。傳統的濾波器組的寬頻檢測需要大量的射頻前端器件,並且不能靈活調整系統參數。普通的寬頻接收電路要求很高的采樣率,它給模數轉換器帶來挑戰,並且獲得的大量數據處理給數字信號處理器帶來負擔。針對寬頻譜感知的難題,將壓縮感知方法應用到寬頻譜感知中:採用一個寬頻數字電路,以較低的頻譜獲得欠采樣的隨機樣本,然後在數字信號處理器中採用稀疏信號估計演算法得到寬頻譜感知結果。
信道編碼:壓縮感測理論中關於稀疏性、隨機性和凸最優化的結論可以直接應用於設計快速誤差校正編碼, 這種編碼方式在實時傳輸過程中不受誤差的影響。在壓縮編碼過程中, 稀疏表示所需的基對於編碼器可能是未知的. 然而在壓縮感測編碼過程中, 它只在解碼和重構原信號時需要, 因此不需考慮它的結構, 所以可以用通用的編碼策略進行編碼. Haupt等通過實驗表明如果圖像是高度可壓縮的或者SNR充分大, 即使測量過程存在雜訊, 壓縮感測方法仍可以准確重構圖像。 波達方向估計:目標出現的角度在整個掃描空間來看,是極少數。波達方向估計問題在空間譜估計觀點來看是一個欠定的線性逆問題。通過對角度個數的稀疏限制,可以完成壓縮感知的波達方向估計。
波束形成:傳統的 自適應波束形成因其高解析度和抗干擾能力強等優點而被廣泛採用。但同時它的高旁瓣水平和角度失匹配敏感度高問題將大大降低接收性能。為了改進Capon 波束形成的性能,這些通過稀疏波束圖整形的方法限制波束圖中陣列增益較大的元素個數,同時鼓勵較大的陣列增益集中在波束主瓣中,從而達到降低旁瓣水平同時,提高主瓣中陣列增益水平,降低角度失匹配的影響。例如,最大主瓣旁瓣能量比,混合范數法,最小全變差。 運用壓縮感測原理, RICE大學成功研製了單像素壓縮數碼照相機。 設計原理首先是通過光路系統將成像目標投影到一個數字微鏡器件(DMD)上, 其反射光由透鏡聚焦到單個光敏二極體上, 光敏二極體兩端的電壓值即為一個測量值y, 將此投影操作重復M次, 得到測量向量 , 然後用最小全變分演算法構建的數字信號處理器重構原始圖像。數字微鏡器件由數字電壓信號控制微鏡片的機械運動以實現對入射光線的調整。 由於該相機直接獲取的是M次隨機線性測量值而不是獲取原始信號的N(M,N)個像素值, 為低像素相機拍攝高質量圖像提供了可能.。
壓縮感測技術也可以應用於雷達成像領域, 與傳統雷達成像技術相比壓縮感測雷達成像實現了兩個重要改進: 在接收端省去脈沖壓縮匹配濾波器; 同時由於避開了對原始信號的直接采樣, 降低了接收端對模數轉換器件帶寬的要求. 設計重點由傳統的設計昂貴的接收端硬體轉化為設計新穎的信號恢復演算法, 從而簡化了雷達成像系統。 生物感測中的傳統DNA晶元能平行測量多個有機體, 但是只能識別有限種類的有機體, Sheikh等人運用壓縮感測和群組檢測原理設計的壓縮感測DNA晶元克服了這個缺點。 壓縮感測DNA晶元中的每個探測點都能識別一組目標, 從而明顯減少了所需探測點數量. 此外基於生物體基因序列稀疏特性, Sheikh等人驗證了可以通過置信傳播的方法實現壓縮感測DNA晶元中的信號重構。

㈤ 什麼是「壓縮感知」

壓縮感知,又稱壓縮采樣,壓縮感測。它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist 采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。壓縮感知理論一經提出,就引起學術界和工業界的廣泛關注。它在資訊理論、圖像處理、地球科學、光學、微波成像、模式識別、無線通信、大氣、地質等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。

㈥ 你好,我現在讀研一,導師讓我們選方向。有圖像處理,模式識別,壓縮感測。哪個就業前景更好

聽我的師兄說,研究生就業對研究方向要求不是那麼看重,就業主要看你的專業和學校。研究方向選哪個看你導師推薦的和你自己的興趣。

㈦ 如何理解壓縮感知

壓縮感知的幾個看似稀鬆平常,但是很關鍵的理論基礎如下: 壓縮感知最初提出時,是針對稀疏信號x,給出觀測模型y=Φ*x時,要有怎麼樣的Φ,通過什麼樣的方式可以從y中恢復出x。(PS:稀疏信號,是指在這個信號x中非零元素的個數遠小於其中零元素的個數。) 然而,很多信號本身並非稀疏的,比如圖像信號。此時可以通過正交變換Ψ』,將信號投影到另外一個空間,而在這個空間中,信號a=Ψ'*x(analysis model)變得稀疏了。然後我們可以由模型y=Φ*a,即y=Φ*Ψ'*x,來恢復原始信號x。 後來,人們發現不僅僅能夠通過正交變換,得到稀疏的信號;還可以通過一個字典D,得到稀疏信號x=D*a(synthesis model),a是稀疏的,為了增強變換後信號的稀疏性,通常D是過完備的。即模型y=Φ*x=Φ*D*a,此時記A^{CS}=Φ*D,即為感知矩陣。這個模型,是我們現在最常用的。

㈧ 壓縮感知在地震勘探中有什麼應用

壓縮感知,又稱壓縮采樣,壓縮感測。它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。壓縮感知理論一經提出,就引起學術界和工業的界的廣泛關注。他在資訊理論、圖像處理、地球科學、光學/微波成像、模式識別、無線通信、大氣、地質等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。壓縮感知理論的核心思想主要包括兩點。第一個是信號的稀疏結構。傳統的Shannon信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。但是,現實生活中很多廣受關注的信號本身具有一些結構特點。相對於帶寬信息的自由度,這些結構特點是由信號的更小的一部分自由度所決定。換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。所以,在這種意義上,這種信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。另外一點是不相關特性。稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓縮成較小的樣本數據來完成。理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。這些波形要求是與信號所在的稀疏空間不相關的。壓縮感知壓縮感知方法拋棄了當前信號采樣中的冗餘信息。它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。這里恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。

熱點內容
唱吧上傳自己的歌 發布:2025-01-11 19:57:35 瀏覽:658
數據的存儲結構包括哪些 發布:2025-01-11 19:56:52 瀏覽:356
資料庫新聞表 發布:2025-01-11 19:55:23 瀏覽:232
壓縮氣翻譯 發布:2025-01-11 19:42:51 瀏覽:744
安卓如何正確卡槍 發布:2025-01-11 19:29:57 瀏覽:751
米家小相機存儲卡 發布:2025-01-11 19:22:30 瀏覽:699
我的世界如何輸地圖密碼 發布:2025-01-11 19:13:21 瀏覽:226
php表單注冊 發布:2025-01-11 18:43:02 瀏覽:162
虛擬存儲功能 發布:2025-01-11 18:43:01 瀏覽:889
ninjaandroid 發布:2025-01-11 18:26:10 瀏覽:527