當前位置:首頁 » 文件管理 » redis緩存方案

redis緩存方案

發布時間: 2022-10-04 01:13:12

⑴ Redis分布式緩存搭建

花了兩天時間整理了之前記錄的Redis單體與哨兵模式的搭建與使用,又補齊了集群模式的使用和搭建經驗,並對集群的一些個原理做了理解。

筆者安裝中遇到的一些問題:

如果make報錯,可能是沒裝gcc或者gcc++編輯器,安裝之 yum -y install gcc gcc-c++ kernel-devel ,有可能還是提示一些個c文件編譯不過,gcc -v查看下版本,如果不到5.3那麼升級一下gcc:

在 /etc/profile 追加一行 source /opt/rh/devtoolset-9/enable

scl enable devtoolset-9 bash

重新make clean, make

這回編譯通過了,提示讓你最好make test一下/

執行make test ,如果提示 You need tcl 8.5 or newer in order to run the Redis test

那就升級tcl, yum install tcl

重新make test,如果還有error就刪了目錄,重新tar包解壓重新make , make test

o/ All tests passed without errors! ,表示編譯成功。

然後make install即可。

直接運行命令: ./redis-server /usr/redis-6.0.3/redis.conf &

redis.conf 配置文件里 bind 0.0.0.0 設置外部訪問, requirepass xxxx 設置密碼

redis高可用方案有兩種:

常用搭建方案為1主1從或1主2從+3哨兵監控主節點, 以及3主3從6節點集群。

(1)sentinel哨兵

/usr/redis-6.0.3/src/redis-sentinel /usr/redis-6.0.3/sentinel2.conf &

sentinel2.conf配置:

坑1:master節點也會在故障轉移後成為從節點,也需要配置masterauth

當kill master進程之後,經過sentinel選舉,slave成為了新的master,再次啟動原master,提示如下錯誤:

原因是此時的master再次啟動已經是slave了,需要向現在的新master輸入密碼,所以需要在master.conf
中配置:

坑2:哨兵配置文件要暴露客戶端可以訪問到的master地址

在 sentinel.conf 配置文件的 sentinel monitor mymaster 122.xx.xxx.xxx 6379 2 中,配置該哨兵對應的master名字、master地址和埠,以及達到多少個哨兵選舉通過認為master掛掉。其中master地址要站在redis訪問者(也就是客戶端)的角度、配置訪問者能訪問的地址,例如sentinel與master在一台伺服器(122.xx.xxx.xxx)上,那麼相對sentinel其master在本機也就是127.0.0.1上,這樣 sentinel monitor mymaster 127.0.0.1 6379 2 邏輯上沒有問題,但是如果另外伺服器上的springboot通過lettuce訪問這個redis哨兵,則得到的master地址為127.0.0.1,也就是springboot所在伺服器本機,這顯然就有問題了。

附springboot2.1 redis哨兵配置:

坑3:要注意配置文件.conf會被哨兵修改

redis-cli -h localhost -p 26379 ,可以登到sentinel上用info命令查看一下哨兵的信息。

曾經遇到過這樣一個問題,大致的信息如下

slaves莫名其妙多了一個,master的地址也明明改了真實對外的地址,這里又變成127.0.0.1 !
最後,把5個redis進程都停掉,逐個檢查配置文件,發現redis的配置文件在主從哨兵模式會被修改,master的配置文件最後邊莫名其妙多了一行replicaof 127.0.0.1 7001, 懷疑應該是之前配置錯誤的時候(見坑2)被哨兵動態加上去的! 總之,實踐中一定要多注意配置文件的變化。

(2)集群

當數據量大到一定程度,比如幾十上百G,哨兵模式不夠用了需要做水平拆分,早些年是使用codis,twemproxy這些第三方中間件來做分片的,即 客戶端 -> 中間件 -> Redis server 這樣的模式,中間件使用一致性Hash演算法來確定key在哪個分片上。後來Redis官方提供了方案,大家就都採用官方的Redis Cluster方案了。

Redis Cluster從邏輯上分16384個hash slot,分片演算法是 CRC16(key) mod 16384 得到key應該對應哪個slot,據此判斷這個slot屬於哪個節點。

每個節點可以設置1或多個從節點,常用的是3主節點3從節點的方案。

reshard,重新分片,可以指定從哪幾個節點移動一些hash槽到另一個節點去。重新分片的過程對客戶端透明,不影響線上業務。

搭建Redis cluster

redis.conf文件關鍵的幾個配置:

啟動6個集群節點

[root@VM_0_11_centos redis-6.0.3]# ps -ef|grep redis
root 5508 1 0 21:25 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7001 [cluster]
root 6903 1 0 21:32 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7002 [cluster]
root 6939 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7003 [cluster]
root 6966 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7004 [cluster]
root 6993 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7005 [cluster]
root 7015 1 0 21:33 ? 00:00:00 /usr/redis-6.0.3/src/redis-server 0.0.0.0:7006 [cluster]

這時候這6個節點還是獨立的,要把他們配置成集群:

說明: -a xxxx 是因為筆者在redis.conf中配置了requirepass xxxx密碼,然後 --cluster-replicas 1 中的1表示每個master節點有1個從節點。

上述命令執行完以後會有一個詢問: Can I set the above configuration? yes同意自動做好的分片即可。

最後 All 16384 slots covered. 表示集群中16384個slot中的每一個都有至少有1個master節點在處理,集群啟動成功。

查看集群狀態:

坑1:暴露給客戶端的節點地址不對

使用lettuce連接發現連不上,查看日誌 Connection refused: no further information: /127.0.0.1:7002 ,跟之前哨兵配置文件sentinel.conf里邊配置master地址犯的錯誤一樣,集群啟動的時候帶的地址應該是提供給客戶端訪問的地址。

我們要重建集群:先把6個redis進程停掉,然後刪除 nodes-7001.conf 這些節點配置文件,刪除持久化文件 mp.rdb 、 appendonly.aof ,重新啟動6個進程,在重新建立集群:

然後,還是連不上,這次報錯 connection timed out: /172.xx.0.xx:7004 ,發現連到企鵝雲伺服器的內網地址上了!

解決辦法,修改每個節點的redis.conf配置文件,找到如下說明:

所以增加配置:

然後再重新構建集群,停進程、改配置、刪除節點文件和持久化文件、啟動進程、配置集群。。。再來一套(累死了)

重新使用Lettuce測試,這次終於連上了!

坑2:Lettuce客戶端在master節點故障時沒有自動切換到從節點

name這個key在7002上,kill這個進程模擬master下線,然後Lettuce一直重連。我們期望的是應該能自動切換到其slave 7006上去,如下圖:

重新啟動7002進程,

7006已成為新master,7002成為它的slave,然後Lettuce也能連接上了。
解決辦法,修改Lettuce的配置:

筆者用的是springboot 2.1 spring-boot-starter-data-redis 默認的Lettuce客戶端,當使用Redis cluster集群模式時,需要配置一下 RedisConnectionFactory 開啟自適應刷新來做故障轉移時的自動切換從節點進行連接。

重新測試:停掉master 7006,這次Lettuce可以正常切換連到7002slave上去了。(仍然會不斷的在日誌里報連接錯誤,因為需要一直嘗試重連7006,但因為有7002從節點頂上了、所以應用是可以正常使用的)

Redis不保證數據的強一致性

Redis並不保證數據的強一致性,也就是取CAP定理中的AP

關於一致性Hash演算法,可以參考 一致性Hash演算法 - (jianshu.com)

Redis cluster使用的是hash slot演算法,跟一致性Hash演算法不太一樣,固定16384個hash槽,然後計算key落在哪個slot里邊(計算key的CRC16值再對16384取模),key找的是slot而不是節點,而slot與節點的對應關系可以通過reshard改變並通過gossip協議擴散到集群中的每一個節點、進而可以為客戶端獲知,這樣key的節點定址就跟具體的節點個數沒關系了。也同樣解決了普通hash取模演算法當節點個數發生變化時,大量key對應的定址都發生改動導致緩存失效的問題。

比如集群增加了1個節點,這時候如果不做任何操作,那麼新增加的這個節點上是沒有slot的,所有slot都在原來的節點上且對應關系不變、所以沒有因為節點個數變動而緩存失效,當reshard一部分slot到新節點後,客戶端獲取到新遷移的這部分slot與新節點的對應關系、定址到新節點,而沒遷移的slot仍然定址到原來的節點。

關於熱遷移,猜想,內部應該是先做復制遷移,等遷移完了,再切換slot與節點的對應關系,復制沒有完成之前仍按照原來的slot與節點對應關系去原節點訪問。復制結束之後,再刪除原節點上已經遷移的slot所對應的key。

與哨兵模式比較類似,當1個節點發現某個master節點故障了、會對這個故障節點進行pfail主觀宕機,然後會通過gossip協議通知到集群中的其他節點、其他節點也執行判斷pfail並gossip擴散廣播這一過程,當超過半數節點pfail時那麼故障節點就是fail客觀宕機。接下來所有的master節點會在故障節點的從節點中選出一個新的主節點,此時所有的master節點中超過半數的都投票選舉了故障節點的某個從節點,那麼這個從節點當選新的master節點。

所有節點都持有元數據,節點之間通過gossip這種二進制協議進行通信、發送自己的元數據信息給其他節點、故障檢測、集群配置更新、故障轉移授權等等。

這種去中心化的分布式節點之間內部協調,包括故障識別、故障轉移、選主等等,核心在於gossip擴散協議,能夠支撐這樣的廣播協議在於所有的節點都持有一份完整的集群元數據,即所有的節點都知悉當前集群全局的情況。

Redis高可用方案 - (jianshu.com)

面試題:Redis 集群模式的工作原理能說一下么 - 雲+社區 - 騰訊雲 (tencent.com)

深度圖解Redis Cluster原理 - detectiveHLH - 博客園 (cnblogs.com)

Redis學習筆記之集群重啟和遇到的坑-阿里雲開發者社區 (aliyun.com)

雲伺服器Redis集群部署及客戶端通過公網IP連接問題

⑵ Redis緩存雪崩就這么簡單

在實際項目開發中,我們都知道Redis不可能把所有的數據都緩存起來( 內存昂貴且有限 ),所以Redis需要對數據設置過期時間,並採用的是惰性刪除+定期刪除兩種策略對過期鍵刪除。

如果緩存數據 設置的過期時間是相同 的,並且Redis恰好將這部分數據全部刪光了。這就會導致在這段時間內,這些緩存 同時失效 ,全部請求到資料庫中。

這就是緩存雪崩

緩存雪崩如果發生了,很可能就把我們的資料庫 搞垮 ,導致整個服務癱瘓,造成的後果很嚴重。

對緩存數據設置相同的過期時間,導致某段時間內緩存失效。」

對於「Redis掛掉了」,我們可以有以下的思路:

⑶ SpringBoot整合SpringSeesion實現Redis緩存

使用Spring Boot開發項目時我們經常需要存儲Session,因為Session中會存一些用戶信息或者登錄信息。傳統的web服務是將session存儲在內存中的,一旦服務掛了,session也就消失了,這時候我們就需要將session存儲起來,而Redis就是用來緩存seesion的一種非關系型資料庫,我們可以通過配置或者註解的方式將Spring Boot和Redis整合。而在分布式系統中又會涉及到session共享的問題,多個服務同時部署時session需要共享,Spring Session可以幫助我們實現這一功能。將Spring Session集成到Spring Boot框架中並使用Redis進行緩存是目前非常流行的解決方案,接下來就跟著我一起學習吧。

工具/材料

IntelliJ IDEA

首先我們創建一個Spring Boot 2.x的項目,在application.properties配置文件中添加Redis的配置,Spring和Redis的整合可以參考我其他的文章,此處不再詳解。我們設置服務埠server.port為8080埠用於啟動第一個服務。

接下來我們需要在pom文件中添加spring-boot-starter-data-redis和spring-session-data-redis這兩個依賴,spring-boot-starter-data-redis用於整合Spring Boot和Redis,spring-session-data-redis集成了spring-session和spring-data-redis,提供了session與redis的整合方案。

接下來我們創建一個配置類RedisSessionConfig,這個類使用@Configuration註解表明這是一個配置類。在這個類上我們同時添加註解@EnableRedisHttpSession,表示開啟Redis的Session管理。如果需要設置失效時間可以使用@EnableRedisHttpSession(maxInactiveIntervalInSeconds = 3600)表示一小時後失效。若同時需要設置Redis的命名空間則使用@EnableRedisHttpSession(maxInactiveIntervalInSeconds=3600, redisNamespace="{spring.session.redis.namespace}") ,其中{spring.session.redis.namespace}表示從配置文件中讀取這個命名空間。

配置完成後我們寫一個測試類SessionController,在這個類中我們寫兩個方法,一個方法用於往session中存數據,一個用於從session中取數據,代碼如下圖所示,我們存取請求的url。啟動類非常簡單,一般都是通用的,我們創建一個名為SpringbootApplication的啟動類,使用main方法啟動。

接下來我們使用Postman分別請求上面兩個介面,先請求存數據介面,再請求取數據介面,結果如下圖所示,我們可以看到數據已從redis中取出。另外需要注意sessionId的值,這是session共享的關鍵。

為了驗證兩個服務是否共享了session,我們修改項目的配置文件,將服務埠server.port改為8090,然後再啟動服務。此時我們不必在請求存數據的介面,只需要修改請求埠號再一次請求取數據的介面即可。由下圖可以看到兩次請求的sessionId值相同,實現了session的共享。

以上我們完成了SpringBoot整合SpringSeesion實現Redis緩存的功能,在此我們還要推薦一個Redis的可視化工具RedisDesktopManager,我們可以配置Redis資料庫的連接,然後便可以非常直觀地查看到存儲到Redis中的session了,如下圖所示,session的命名空間是share,正是從配置文件中讀取到的。

特別提示

如果Redis伺服器是很多項目共用的,非常建議配置命名空間,否則同時打開多個項目的瀏覽器頁面可能會導致session錯亂的現象。

⑷ 該怎麼解決 Redis 緩存穿透和緩存雪崩問題

緩存雪崩: 由於緩存層承載著大量請求,有效地 保護了存儲層,但是如果緩存層由於某些原因不能提供服務,比如 Redis 節點掛掉了,熱點 key 全部失效了,在這些情況下,所有的請求都會直接請求到資料庫,可能會造成資料庫宕機的情況。
預防和解決緩存雪崩問題,可以從以下三個方面進行著手:
1、使用 Redis 高可用架構:使用 Redis 集群來保證 Redis 服務不會掛掉
2、緩存時間不一致: 給緩存的失效時間,加上一個隨機值,避免集體失效
3、限流降級策略:有一定的備案,比如個性推薦服務不可用了,換成熱點數據推薦服務
緩存穿透: 緩存穿透是指查詢一個根本不存在的數據,這樣的數據肯定不在緩存中,這會導致請求全部落到資料庫上,有可能出現資料庫宕機的情況。
預防和解決緩存穿透問題,可以考慮以下兩種方法:
1、緩存空對象: 將空值緩存起來,但是這樣就有一個問題,大量無效的空值將佔用空間,非常浪費。
2、布隆過濾器攔截: 將所有可能的查詢key 先映射到布隆過濾器中,查詢時先判斷key是否存在布隆過濾器中,存在才繼續向下執行,如果不存在,則直接返回。布隆過濾器有一定的誤判,所以需要你的業務允許一定的容錯性。

⑸ windows環境下Redis+Spring緩存實例

一、Redis了解

1.1、Redis介紹:

redis是一個key-value存儲系統。和Memcached類似,它支持存儲的value類型相對更多,包括string(字元串)、list(鏈表)、set(集合)、zset(sorted set –有序集合)和hash(哈希類型)。這些數據類型都支持push/pop、add/remove及取交集並集和差集及更豐富的操作,而且這些操作都是原子性的。在此基礎上,redis支持各種不同方式的排序。與memcached一樣,為了保證效率,數據都是緩存在內存中。區別的是redis會周期性的把更新的數據寫入磁碟或者把修改操作寫入追加的記錄文件,並且在此基礎上實現了master-slave(主從)同步。

Redis資料庫完全在內存中,使用磁碟僅用於持久性。相比許多鍵值數據存儲,Redis擁有一套較為豐富的數據類型。Redis可以將數據復制到任意數量的從伺服器。

1.2、Redis優點:

(1)異常快速:Redis的速度非常快,每秒能執行約11萬集合,每秒約81000+條記錄。

(2)支持豐富的數據類型:Redis支持最大多數開發人員已經知道像列表,集合,有序集合,散列數據類型。這使得它非常容易解決各種各樣的問題,因為我們知道哪些問題是可以處理通過它的數據類型更好。

(3)操作都是原子性:所有Redis操作是原子的,這保證了如果兩個客戶端同時訪問的Redis伺服器將獲得更新後的值。

(4)多功能實用工具:Redis是一個多實用的工具,可以在多個用例如緩存,消息,隊列使用(Redis原生支持發布/訂閱),任何短暫的數據,應用程序,如Web應用程序會話,網頁命中計數等。

1.3、Redis缺點:

(1)單線程

(2)耗內存

二、64位windows下Redis安裝

Redis官方是不支持windows的,但是Microsoft Open Tech group 在 GitHub上開發了一個Win64的版本,下載地址:https://github.com/MSOpenTech/redis/releases。注意只支持64位哈。

小寶鴿是下載了Redis-x64-3.0.500.msi進行安裝。安裝過程中全部採取默認即可。

安裝完成之後可能已經幫你開啟了Redis對應的服務,博主的就是如此。查看資源管理如下,說明已經開啟:

已經開啟了對應服務的,我們讓它保持,下面例子需要用到。如果沒有開啟的.,我們命令開啟,進入Redis的安裝目錄(博主的是C:Program FilesRedis),然後如下命令開啟:

redis-server redis.windows.conf

OK,下面我們進行實例。

三、詳細實例

本工程採用的環境:Eclipse + maven + spring + junit

3.1、添加相關依賴(spring+junit+redis依賴),pom.xml:

4.0.0 com.luo redis_project 0.0.1-SNAPSHOT 3.2.8.RELEASE 4.10 org.springframework spring-core ${spring.version} org.springframework spring-webmvc ${spring.version} org.springframework spring-context ${spring.version} org.springframework spring-context-support ${spring.version} org.springframework spring-aop ${spring.version} org.springframework spring-aspects ${spring.version} org.springframework spring-tx ${spring.version} org.springframework spring-jdbc ${spring.version} org.springframework spring-web ${spring.version} junit junit ${junit.version} test org.springframework spring-test ${spring.version} test org.springframework.data spring-data-redis 1.6.1.RELEASE redis.clients jedis 2.7.3

3.2、spring配置文件application.xml:

<"1.0" encoding="UTF-8"> classpath:properties/*.properties

3.3、Redis配置參數,redis.properties:

#redis中心#綁定的主機地址redis.host=127.0.0.1#指定Redis監聽埠,默認埠為6379redis.port=6379#授權密碼(本例子沒有使用)redis.password=123456 #最大空閑數:空閑鏈接數大於maxIdle時,將進行回收redis.maxIdle=100 #最大連接數:能夠同時建立的「最大鏈接個數」redis.maxActive=300 #最大等待時間:單位msredis.maxWait=1000 #使用連接時,檢測連接是否成功 redis.testOnBorrow=true#當客戶端閑置多長時間後關閉連接,如果指定為0,表示關閉該功能redis.timeout=10000

3.4、添加介面及對應實現RedisTestService.java和RedisTestServiceImpl.java:

package com.luo.service; public interface RedisTestService { public String getTimestamp(String param);}

package com.luo.service.impl; import org.springframework.stereotype.Service;import com.luo.service.RedisTestService; @Servicepublic class RedisTestServiceImpl implements RedisTestService { public String getTimestamp(String param) { Long timestamp = System.currentTimeMillis(); return timestamp.toString(); } }

3.5、本例採用spring aop切面方式進行緩存,配置已在上面spring配置文件中,對應實現為MethodCacheInterceptor.java:

package com.luo.redis.cache; import java.io.Serializable;import java.util.concurrent.TimeUnit;import org.aopalliance.intercept.MethodInterceptor;import org.aopalliance.intercept.MethodInvocation;import org.springframework.data.redis.core.RedisTemplate;import org.springframework.data.redis.core.ValueOperations; public class MethodCacheInterceptor implements MethodInterceptor { private RedisTemplate redisTemplate; private Long defaultCacheExpireTime = 10l; // 緩存默認的過期時間,這里設置了10秒 public Object invoke(MethodInvocation invocation) throws Throwable { Object value = null; String targetName = invocation.getThis().getClass().getName(); String methodName = invocation.getMethod().getName(); Object[] arguments = invocation.getArguments(); String key = getCacheKey(targetName, methodName, arguments); try { // 判斷是否有緩存 if (exists(key)) { return getCache(key); } // 寫入緩存 value = invocation.proceed(); if (value != null) { final String tkey = key; final Object tvalue = value; new Thread(new Runnable() { public void run() { setCache(tkey, tvalue, defaultCacheExpireTime); } }).start(); } } catch (Exception e) { e.printStackTrace(); if (value == null) { return invocation.proceed(); } } return value; } /** * 創建緩存key * * @param targetName * @param methodName * @param arguments */ private String getCacheKey(String targetName, String methodName, Object[] arguments) { StringBuffer sbu = new StringBuffer(); sbu.append(targetName).append("_").append(methodName); if ((arguments != null) && (arguments.length != 0)) { for (int i = 0; i < arguments.length; i++) { sbu.append("_").append(arguments[i]); } } return sbu.toString(); } /** * 判斷緩存中是否有對應的value * * @param key * @return */ public boolean exists(final String key) { return redisTemplate.hasKey(key); } /** * 讀取緩存 * * @param key * @return */ public Object getCache(final String key) { Object result = null; ValueOperations operations = redisTemplate .opsForValue(); result = operations.get(key); return result; } /** * 寫入緩存 * * @param key * @param value * @return */ public boolean setCache(final String key, Object value, Long expireTime) { boolean result = false; try { ValueOperations operations = redisTemplate .opsForValue(); operations.set(key, value); redisTemplate.expire(key, expireTime, TimeUnit.SECONDS); result = true; } catch (Exception e) { e.printStackTrace(); } return result; } public void setRedisTemplate( RedisTemplate redisTemplate) { this.redisTemplate = redisTemplate; }}

3.6、單元測試相關類:

package com.luo.baseTest; import org.junit.runner.RunWith; import org.springframework.test.context.ContextConfiguration; import org.springframework.test.context.junit4.; import org.springframework.test.context.junit4.SpringJUnit4ClassRunner; //指定bean注入的配置文件 @ContextConfiguration(locations = { "classpath:application.xml" }) //使用標準的JUnit @RunWith注釋來告訴JUnit使用Spring TestRunner @RunWith(SpringJUnit4ClassRunner.class) public class SpringTestCase extends { }

package com.luo.service; import org.junit.Test;import org.springframework.beans.factory.annotation.Autowired; import com.luo.baseTest.SpringTestCase; public class RedisTestServiceTest extends SpringTestCase { @Autowired private RedisTestService redisTestService; @Test public void getTimestampTest() throws InterruptedException{ System.out.println("第一次調用:" + redisTestService.getTimestamp("param")); Thread.sleep(2000); System.out.println("2秒之後調用:" + redisTestService.getTimestamp("param")); Thread.sleep(11000); System.out.println("再過11秒之後調用:" + redisTestService.getTimestamp("param")); } }

3.7、運行結果:

四、源碼下載:redis-project().rar

以上就是本文的全部內容,希望對大家的學習有所幫助。

⑹ mysql讀寫分離和用Redis做緩存,這兩種方案有什麼異同

讀寫分離一般都是結合Master/Slave模式使用,Master處理寫請求,Slave處理讀請求,這樣做的好處是:
1、提高資料庫的並發處理能力;
2、避免寫請求鎖表阻塞讀請求;
3、避免單點,提高資料庫的可用性;
而使用Redis作為DB前面的緩存,是為了減少對MySQL的壓力,提高系統的處理效率。

二者解決的問題域不同,不存在誰替代誰。

一般高並發應用都是結合二者使用。

⑺ web伺服器怎麼使用redis分步式緩存

Redis復制流程概述
Redis的復制功能是完全建立在之前我們討論過的基於內存快照的持久化策略基礎上的,也就是說無論你的持久化策略選擇的是什麼,只要用到了Redis的復制功能,就一定會有內存快照發生,那麼首先要注意你的系統內存容量規劃,原因可以參考我上一篇文章中提到的Redis磁碟IO問題。
Redis復制流程在Slave和Master端各自是一套狀態機流轉,涉及的狀態信息是:
Slave 端:
REDIS_REPL_NONEREDIS_REPL_CONNECTREDIS_REPL_CONNECTED
Master端:
REDIS_REPL_WAIT_BGSAVE_STARTREDIS_REPL_WAIT_BGSAVE_ENDREDIS_REPL_SEND_BULKREDIS_REPL_ONLINE
整個狀態機流程過程如下:
Slave端在配置文件中添加了slave of指令,於是Slave啟動時讀取配置文件,初始狀態為REDIS_REPL_CONNECT。
Slave端在定時任務serverCron(Redis內部的定時器觸發事件)中連接Master,發送sync命令,然後阻塞等待master發送回其內存快照文件(最新版的Redis已經不需要讓Slave阻塞)。
Master端收到sync命令簡單判斷是否有正在進行的內存快照子進程,沒有則立即開始內存快照,有則等待其結束,當快照完成後會將該文件發送給Slave端。
Slave端接收Master發來的內存快照文件,保存到本地,待接收完成後,清空內存表,重新讀取Master發來的內存快照文件,重建整個內存表數據結構,並最終狀態置位為 REDIS_REPL_CONNECTED狀態,Slave狀態機流轉完成。
Master端在發送快照文件過程中,接收的任何會改變數據集的命令都會暫時先保存在Slave網路連接的發送緩存隊列里(list數據結構),待快照完成後,依次發給Slave,之後收到的命令相同處理,並將狀態置位為 REDIS_REPL_ONLINE。

整個復制過程完成,流程如下圖所示:

Redis復制機制的缺陷
從上面的流程可以看出,Slave從庫在連接Master主庫時,Master會進行內存快照,然後把整個快照文件發給Slave,也就是沒有象MySQL那樣有復制位置的概念,即無增量復制,這會給整個集群搭建帶來非常多的問題。
比如一台線上正在運行的Master主庫配置了一台從庫進行簡單讀寫分離,這時Slave由於網路或者其它原因與Master斷開了連接,那麼當Slave進行重新連接時,需要重新獲取整個Master的內存快照,Slave所有數據跟著全部清除,然後重新建立整個內存表,一方面Slave恢復的時間會非常慢,另一方面也會給主庫帶來壓力。
所以基於上述原因,如果你的Redis集群需要主從復制,那麼最好事先配置好所有的從庫,避免中途再去增加從庫。
Cache還是Storage
在我們分析過了Redis的復制與持久化功能後,我們不難得出一個結論,實際上Redis目前發布的版本還都是一個單機版的思路,主要的問題集中在,持久化方式不夠成熟,復制機制存在比較大的缺陷,這時我們又開始重新思考Redis的定位:Cache還是Storage?
如果作為Cache的話,似乎除了有些非常特殊的業務場景,必須要使用Redis的某種數據結構之外,我們使用Memcached可能更合適,畢竟Memcached無論客戶端包和伺服器本身更久經考驗。
如果是作為存儲Storage的話,我們面臨的最大的問題是無論是持久化還是復制都沒有辦法解決Redis單點問題,即一台Redis掛掉了,沒有太好的辦法能夠快速的恢復,通常幾十G的持久化數據,Redis重啟載入需要幾個小時的時間,而復制又有缺陷,如何解決呢?
Redis可擴展集群搭建1. 主動復制避開Redis復制缺陷。
既然Redis的復制功能有缺陷,那麼我們不妨放棄Redis本身提供的復制功能,我們可以採用主動復制的方式來搭建我們的集群環境。
所謂主動復制是指由業務端或者通過代理中間件對Redis存儲的數據進行雙寫或多寫,通過數據的多份存儲來達到與復制相同的目的,主動復制不僅限於用在Redis集群上,目前很多公司採用主動復制的技術來解決MySQL主從之間復制的延遲問題,比如Twitter還專門開發了用於復制和分區的中間件gizzard(https://github.com/twitter/gizzard) 。
主動復制雖然解決了被動復制的延遲問題,但也帶來了新的問題,就是數據的一致性問題,數據寫2次或多次,如何保證多份數據的一致性呢?如果你的應用對數據一致性要求不高,允許最終一致性的話,那麼通常簡單的解決方案是可以通過時間戳或者vector clock等方式,讓客戶端同時取到多份數據並進行校驗,如果你的應用對數據一致性要求非常高,那麼就需要引入一些復雜的一致性演算法比如Paxos來保證數據的一致性,但是寫入性能也會相應下降很多。
通過主動復制,數據多份存儲我們也就不再擔心Redis單點故障的問題了,如果一組Redis集群掛掉,我們可以讓業務快速切換到另一組Redis上,降低業務風險。
2. 通過presharding進行Redis在線擴容。
通過主動復制我們解決了Redis單點故障問題,那麼還有一個重要的問題需要解決:容量規劃與在線擴容問題。
我們前面分析過Redis的適用場景是全部數據存儲在內存中,而內存容量有限,那麼首先需要根據業務數據量進行初步的容量規劃,比如你的業務數據需要100G存儲空間,假設伺服器內存是48G,那麼根據上一篇我們討論的Redis磁碟IO的問題,我們大約需要3~4台伺服器來存儲。這個實際是對現有業務情況所做的一個容量規劃,假如業務增長很快,很快就會發現當前的容量已經不夠了,Redis裡面存儲的數據很快就會超過物理內存大小,那麼如何進行Redis的在線擴容呢?
Redis的作者提出了一種叫做presharding的方案來解決動態擴容和數據分區的問題,實際就是在同一台機器上部署多個Redis實例的方式,當容量不夠時將多個實例拆分到不同的機器上,這樣實際就達到了擴容的效果。
拆分過程如下:
在新機器上啟動好對應埠的Redis實例。
配置新埠為待遷移埠的從庫。
待復制完成,與主庫完成同步後,切換所有客戶端配置到新的從庫的埠。
配置從庫為新的主庫。
移除老的埠實例。
重復上述過程遷移好所有的埠到指定伺服器上。

以上拆分流程是Redis作者提出的一個平滑遷移的過程,不過該拆分方法還是很依賴Redis本身的復制功能的,如果主庫快照數據文件過大,這個復制的過程也會很久,同時會給主庫帶來壓力。所以做這個拆分的過程最好選擇為業務訪問低峰時段進行。
Redis復制的改進思路
我們線上的系統使用了我們自己改進版的Redis,主要解決了Redis沒有增量復制的缺陷,能夠完成類似Mysql Binlog那樣可以通過從庫請求日誌位置進行增量復制。
我們的持久化方案是首先寫Redis的AOF文件,並對這個AOF文件按文件大小進行自動分割滾動,同時關閉Redis的Rewrite命令,然後會在業務低峰時間進行內存快照存儲,並把當前的AOF文件位置一起寫入到快照文件中,這樣我們可以使快照文件與AOF文件的位置保持一致性,這樣我們得到了系統某一時刻的內存快照,並且同時也能知道這一時刻對應的AOF文件的位置,那麼當從庫發送同步命令時,我們首先會把快照文件發送給從庫,然後從庫會取出該快照文件中存儲的AOF文件位置,並將該位置發給主庫,主庫會隨後發送該位置之後的所有命令,以後的復制就都是這個位置之後的增量信息了。

Redis與MySQL的結合
目前大部分互聯網公司使用MySQL作為數據的主要持久化存儲,那麼如何讓Redis與MySQL很好的結合在一起呢?我們主要使用了一種基於MySQL作為主庫,Redis作為高速數據查詢從庫的異構讀寫分離的方案。
為此我們專門開發了自己的MySQL復制工具,可以方便的實時同步MySQL中的數據到Redis上。

(MySQL-Redis 異構讀寫分離)
總結:
Redis的復制功能沒有增量復制,每次重連都會把主庫整個內存快照發給從庫,所以需要避免向在線服務的壓力較大的主庫上增加從庫。
Redis的復制由於會使用快照持久化方式,所以如果你的Redis持久化方式選擇的是日誌追加方式(aof),那麼系統有可能在同一時刻既做aof日誌文件的同步刷寫磁碟,又做快照寫磁碟操作,這個時候Redis的響應能力會受到影響。所以如果選用aof持久化,則加從庫需要更加謹慎。
可以使用主動復制和presharding方法進行Redis集群搭建與在線擴容。

熱點內容
賽爾編程 發布:2024-10-08 22:30:12 瀏覽:161
威馳車有哪些配置 發布:2024-10-08 22:19:32 瀏覽:564
手游源碼全套 發布:2024-10-08 21:39:41 瀏覽:474
大眾賬號密碼是多少 發布:2024-10-08 21:22:18 瀏覽:890
價格厚道香港多ip伺服器 發布:2024-10-08 21:22:16 瀏覽:283
android適配values 發布:2024-10-08 21:18:36 瀏覽:240
數控折彎機如何編程 發布:2024-10-08 20:34:40 瀏覽:62
pod內部修改配置如何生效 發布:2024-10-08 20:25:33 瀏覽:238
重慶伺服器託管市場低價雲主機 發布:2024-10-08 20:23:39 瀏覽:365
運維接觸源碼 發布:2024-10-08 19:55:44 瀏覽:486