當前位置:首頁 » 文件管理 » 內存緩存原理

內存緩存原理

發布時間: 2022-07-02 09:00:56

Ⅰ 高速緩存的工作原理是什麼

高速緩存內存標識位於主內存中的重復指令和數據,並將其復制到其內存中。CPU不再為相同的指令和數據重復訪問較慢的主內存,而是訪問更快的緩存。

緩存有時稱為CPU內存,通常運行在高性能的SRAM內存模塊上。CPU可以訪問更快的緩存內存來運行性能敏感的操作。高速緩存內存通常集成在主板下,或者在不同的晶元上,通過匯流排與CPU互連。

(1)內存緩存原理擴展閱讀:

在CPU裡面內置了高速緩存可以提高CPU的運行效率。

內置的L1高速緩存的容量和結構對CPU的性能影響較大,不過高速緩沖存儲器均由靜態RAM組成,結構較復雜,在CPU管芯面積不能太大的情況下,L1級高速緩存的容量不可能做得太大。採用回寫(Write Back)結構的高速緩存。

它對讀和寫*作均有可提供緩存。而採用寫通(Write-through)結構的高速緩存,僅對讀*作有效。在486以上的計算機中基本採用了回寫式高速緩存。

在流行的處理器中,奔騰Ⅲ和Celeron處理器擁有32KB的L1高速緩存,奔騰4為8KB,而AMD的Duron和Athlon處理器的L1高速緩存高達128KB。

Ⅱ 緩存和內存有什麼區別

緩存和內存是計算機不同的組成部件。

Ⅲ 內存和緩存有什麼區別和聯系請舉例具體形象比喻兩者的關系!

一般來說緩存都是集成到CPU裡面的。

眾人:「這就是你找不到緩存的圖片理由」?

如果按存取數據的速度相比,緩存是比內存快非常多的,我們電腦的操作系統會為應用程序分配好內存,但是由於內存的存取效率比較低下(相對於CPU的處理速度而言),緩存就是為了解決高速CPU對慢速內存的存取。

還有一個概念,就是一級緩存和二級緩存。

在這之前,先說一下RAM(暫時的、動態的存儲數據,具體點就是我們通常說的內存條)和ROM(永久的、固定的存儲數據,通俗講就是我們說的光碟、dvd、手機內存卡等)。

RAM是掉電的,掉電的意思就是設備關機後RAM內存儲的數據全部清空,ROM內的數據依然存在。

RAM有兩種,靜態和動態,靜態RAM比動態RAM快。

靜態RAM集成度比較低,存儲相同的數據,靜態RAM比動態RAM所花費的體積大約為六倍。

同樣的容量,靜態RAM的價格是動態RAM的四倍。

我們要知道一個道理,緩存作為靜態RAM都是比較昂貴的,所以不要幻想什麼加大緩存什麼的。

但是我們有一個折中的辦法,就是加大高速動態RAM作為緩存,比常規動態RAM要快,當然速度和靜態RAM還是有一定的差距(沒辦法,都是錢鬧的/(ㄒoㄒ)/~~)。

RAM中存儲的都是設備使用頻率比較高的數據和指令,它們都是從內存中復制而來的,這是由一套演算法所維護的,與此同時,RAM內存儲的東西並不是固定的,會跟著時間和使用習慣的改變而改變,一句話,內部保持的數據都是由演算法所決定的。CPU在工作時,先去找靜態RAM(一級緩存),然後再去找後加的高速動態RAM(二級緩存),最後內存。

Ⅳ 內存的工作原理

內存也叫主存,是PC系統存放數據與指令的半導體存儲器單元,也叫主存儲器(Main
Memory),通常分為只讀存儲器(ROM-Read
Only
Memory)、隨機存儲器(RAM-Red
Access
Memory)和高速緩存存儲器(Cache)。我們平常所指的內存條其實就是RAM,其主要的作用是存放各種輸入、輸出數據和中間計算結果,以及與外部存儲器交換信息時做緩沖之用。
下面是結構:
1、PCB板
內存條的PCB板多數都是綠色的。如今的電路板設計都很精密,所以都採用了多層設計,例如4層或6層等,所以PCB板實際上是分層的,其內部也有金屬的布線。理論上6層PCB板比4層PCB板的電氣性能要好,性能也較穩定,所以名牌內存多採用6層PCB板製造。因為PCB板製造嚴密,所以從肉眼上較難分辯PCB板是4層或6層,只能藉助一些印在PCB板上的符號或標識來斷定。
2、金手指
黃色的接觸點是內存與主板內存槽接觸的部分,數據就是靠它們來傳輸的,通常稱為金手指。金手指是銅質導線,使用時間長就可能有氧化的現象,會影響內存的正常工作,易發生無法開機的故障,所以可以隔一年左右時間用橡皮擦清理一下金手指上的氧化物。
3、內存晶元
內存的晶元就是內存的靈魂所在,內存的性能、速度、容量都是由內存晶元組成的。
4、內存顆粒空位
5、電容
PCB板上必不可少的電子元件就是電容和電阻了,這是為了提高電氣性能的需要。電容採用貼片式電容,因為內存條的體積較小,不可能使用直立式電容,但這種貼片式電容性能一點不差,它為提高內存條的穩定性起了很大作用。
6、電阻
電阻也是採用貼片式設計,一般好的內存條電阻的分布規劃也很整齊合理。
7、內存固定卡缺口:內存插到主板上後,主板上的內存插槽會有兩個夾子牢固的扣住內存,這個缺口便是用於固定內存用的。
8、內存腳缺口
內存的腳上的缺口一是用來防止內存插反的(只有一側有),二是用來區分不同的內存,以前的SDRAM內存條是有兩個缺口的,而DDR則只有一個缺口,不能混插。
9、SPD
SPD是一個八腳的小晶元,它實際上是一個EEPROM可擦寫存貯器,這的容量有256位元組,可以寫入一點信息,這信息中就可以包括內存的標准工作狀態、速度、響應時間等,以協調計算機系統更好的工作。從PC100時代開始,PC100規准中就規定符合PC100標準的內存條必須安裝SPD,而且主板也可以從SPD中讀取到內存的信息,並按SPD的規定來使內存獲得最佳的工作環境。

Ⅳ Cache其具體工作原理

Cache被用作CPU針對內存的緩存,利用程序的空間局部性和時間局部性原理,達到較高的命中率,從而避免CPU每次都必須要與相對慢速的內存交互數據來提高數據的訪問速率。DMA可以作為內存與外設之間傳輸數據的方式,在這種傳輸方式之下,數據並不需要經過CPU中轉。假設DMA針對內存的目的地址與Cache緩存的對象沒有重疊區域,DMA和Cache之間將相安無事。
但是,如果DMA的目的地址與Cache所緩存的內存地址訪問有重疊,經過DMA操作,與Cache緩存對應的內存中的數據已經被修改,而CPU本身並不知道,它仍然認為Cache中的數據就是內存中的數據,那在以後訪問Cache映射的內存時,它仍然使用陳舊的Cache數據。這樣就會發生Cache與內存之間數據「不一致性」的錯誤。所謂Cache數據與內存數據的不一致性,是指在採用Cache的系統中,同樣一個數據可能既存在於Cache中,也存在於主存中,Cache與主存中的數據一樣則具有一致性,數據若不一樣則具有不一致性。需要特別注意的是,Cache與內存的一致性問題經常被初學者遺忘。在發生Cache與內存不一致性錯誤後,驅動將無法正常運行。如果沒有相關的背景知識,工程師幾乎無法定位錯誤的原因,因為這時所有的程序看起來都是完全正確的。Cache的不一致性問題並不是只發生在DMA的情況下,實際上,它還存在於Cache使能和關閉的時刻。例如,對於帶MMU功能的ARM處理器,在開啟MMU之前,需要先置Cache無效,對於TLB,也是如此。

Ⅵ 緩存和內存有什麼區別

內存是內部存儲器,是一個硬體設備;緩存是一個比較大的一個概念,用來預讀取信息(比如硬碟的緩存),或者是暫時存儲一些不長久的信息。

Ⅶ 緩存是什麼原理它怎麼會提高整機速度

緩存(Cache memory)是硬碟控制器上的一塊內存晶元,具有極快的存取速度,它是硬碟內部存儲和外界介面之間的緩沖器。由於硬碟的內部數據傳輸速度和外界介面傳輸速度不同,緩存在其中起到一個緩沖的作用。緩存的大小與速度是直接關繫到硬碟的傳輸速度的重要因素,能夠大幅度地提高硬碟整體性能。當硬碟存取零碎數據時需要不斷地在硬碟與內存之間交換數據,如果有大緩存,則可以將那些零碎數據暫存在緩存中,減小外系統的負荷,也提高了數據的傳輸速度。

硬碟的緩存主要起三種作用:一是預讀取。當硬碟受到CPU指令控制開始讀取數據時,硬碟上的控制晶元會控制磁頭把正在讀取的簇的下一個或者幾個簇中的數據讀到緩存中(由於硬碟上數據存儲時是比較連續的,所以讀取命中率較高),當需要讀取下一個或者幾個簇中的數據的時候,硬碟則不需要再次讀取數據,直接把緩存中的數據傳輸到內存中就可以了,由於緩存的速度遠遠高於磁頭讀寫的速度,所以能夠達到明顯改善性能的目的;二是對寫入動作進行緩存。當硬碟接到寫入數據的指令之後,並不會馬上將數據寫入到碟片上,而是先暫時存儲在緩存里,然後發送一個「數據已寫入」的信號給系統,這時系統就會認為數據已經寫入,並繼續執行下面的工作,而硬碟則在空閑(不進行讀取或寫入的時候)時再將緩存中的數據寫入到碟片上。雖然對於寫入數據的性能有一定提升,但也不可避免地帶來了安全隱患——如果數據還在緩存里的時候突然掉電,那麼這些數據就會丟失。對於這個問題,硬碟廠商們自然也有解決辦法:掉電時,磁頭會藉助慣性將緩存中的數據寫入零磁軌以外的暫存區域,等到下次啟動時再將這些數據寫入目的地;第三個作用就是臨時存儲最近訪問過的數據。有時候,某些數據是會經常需要訪問的,硬碟內部的緩存會將讀取比較頻繁的一些數據存儲在緩存中,再次讀取時就可以直接從緩存中直接傳輸。

緩存容量的大小不同品牌、不同型號的產品各不相同,早期的硬碟緩存基本都很小,只有幾百KB,已無法滿足用戶的需求。2MB和8MB緩存是現今主流硬碟所採用,而在伺服器或特殊應用領域中還有緩存容量更大的產品,甚至達到了16MB、64MB等。

大容量的緩存雖然可以在硬碟進行讀寫工作狀態下,讓更多的數據存儲在緩存中,以提高硬碟的訪問速度,但並不意味著緩存越大就越出眾。緩存的應用存在一個演算法的問題,即便緩存容量很大,而沒有一個高效率的演算法,那將導致應用中緩存數據的命中率偏低,無法有效發揮出大容量緩存的優勢。演算法是和緩存容量相輔相成,大容量的緩存需要更為有效率的演算法,否則性能會大大折扣,從技術角度上說,高容量緩存的演算法是直接影響到硬碟性能發揮的重要因素。更大容量緩存是未來硬碟發展的必然趨勢。

Ⅷ 什麼叫緩存

所謂的緩存,就是將程序或系統經常要調用的對象存在內存中,一遍其使用時可以快速調用,不必再去創建新的重復的實例。這樣做可以減少系統開銷,提高系統效率。

1、通過文件緩存;顧名思義文件緩存是指把數據存儲在磁碟上,不管你是以XML格式,序列化文件DAT格式還是其它文件格式;

2、內存緩存;也就是創建一個靜態內存區域,將數據存儲進去,例如我們B/S架構的將數據存儲在Application中或者存儲在一個靜態Map中。

3、本地內存緩存;就是把數據緩存在本機的內存中。

4、分布式緩存機制;可能存在跨進程,跨域訪問緩存數據

對於分布式的緩存,此時因為緩存的數據是放在緩存伺服器中的,或者說,此時應用程序需要跨進程的去訪問分布式緩存伺服器。

(8)內存緩存原理擴展閱讀

當我們在應用中使用跨進程的緩存機制,例如分布式緩存memcached或者微軟的AppFabric,此時數據被緩存在應用程序之外的進程中。

每次,當我們要把一些數據緩存起來的時候,緩存的API就會把數據首先序列化為位元組的形式,然後把這些位元組發送給緩存伺服器去保存。

同理,當我們在應用中要再次使用緩存的數據的時候,緩存伺服器就會將緩存的位元組發送給應用程序,而緩存的客戶端類庫接受到這些位元組之後就要進行反序列化的操作了,將之轉換為我們需要的數據對象。

Ⅸ 高速緩沖存儲器的工作原理是什麼

高速緩存內存標識位於主內存中的重復指令和數據,並將其復制到其內存中。CPU不再為相同的指令和數據重復訪問較慢的主內存,而是訪問更快的緩存。

緩存有時稱為CPU內存,通常運行在高性能的SRAM內存模塊上。CPU可以訪問更快的緩存內存來運行性能敏感的操作。高速緩存內存通常集成在主板下,或者在不同的晶元上,通過匯流排與CPU互連。

(9)內存緩存原理擴展閱讀

Cache 技術所依賴的原理是」程序執行與數據訪問的局部性原理「,這種局部性表現在兩個方面:

時間局部性:如果程序中的某條指令一旦執行,不久以後該指令可能再次執行,如果某數據被訪問過,不久以後該數據可能再次被訪問。

空間局部性:一旦程序訪問了某個存儲單元,在不久之後,其附近的存儲單元也將被訪問,即程序在一段時間內所訪問的地址,可能集中在一定的范圍之內,這是因為指令或數據通常是順序存放的。

時間局部性是通過將近來使用的指令和數據保存到Cache中實現。空間局部性通常是使用較大的高速緩存,並將 預取機制 集成到高速緩存控制邏輯中來實現。

Ⅹ CPU緩存的工作原理

CPU要讀取一個數據時,首先從Cache中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入Cache中,可以使得以後對整塊數據的讀取都從Cache中進行,不必再調用內存。
正是這樣的讀取機制使CPU讀取Cache的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在Cache中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先Cache後內存。 前面是把Cache作為一個整體來考慮的,下面分類分析。Intel從Pentium開始將Cache分開,通常分為一級高速緩存L1和二級高速緩存L2。在以往的觀念中,L1 Cache是集成在CPU中的,被稱為片內Cache。在L1中還分數據Cache(D-Cache)和指令Cache(I-Cache)。它們分別用來存放數據和執行這些數據的指令,而且兩個Cache可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。
在P4處理器中使用了一種先進的一級指令Cache——動態跟蹤緩存。它直接和執行單元及動態跟蹤引擎相連,通過動態跟蹤引擎可以很快地找到所執行的指令,並且將指令的順序存儲在追蹤緩存里,這樣就減少了主執行循環的解碼周期,提高了處理器的運算效率。
以前的L2 Cache沒集成在CPU中,而在主板上或與CPU集成在同一塊電路板上,因此也被稱為片外Cache。但從PⅢ開始,由於工藝的提高L2 Cache被集成在CPU內核中,以相同於主頻的速度工作,結束了L2 Cache與CPU大差距分頻的歷史,使L2 Cache與L1 Cache在性能上平等,得到更高的傳輸速度。L2Cache只存儲數據,因此不分數據Cache和指令Cache。在CPU核心不變化的情況下,增加L2 Cache的容量能使性能提升,同一核心的CPU高低端之分往往也是在L2 Cache上做手腳,可見L2 Cache的重要性。CPU的L1 Cache與L2 Cache惟一區別在於讀取順序。 CPU在Cache中找到有用的數據被稱為命中,當Cache中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有2級Cache的CPU中,讀取L1 Cache的命中率為80%。也就是說CPU從L1 Cache中找到的有用數據占數據總量的80%,剩下的20%從L2 Cache讀取。在一些高端領域的CPU(像Intel的Itanium)中,我們常聽到L3 Cache,它是為讀取L2 Cache後未命中的數據設計的—種Cache。
為了保證CPU訪問時有較高的命中率Cache中的內容應該按一定的演算法替換,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出Cache,提高Cache的利用率。緩存技術的發展
總之,在傳輸速度有較大差異的設備間都可以利用Cache作為匹配來調節差距,或者說是這些設備的傳輸通道。在顯示系統、硬碟和光碟機,以及網路通訊中,都需要使用Cache技術。但Cache均由靜態RAM組成,結構復雜,成本不菲,使用現有工藝在有限的面積內不可能做得很大,不過,這也正是技術前進的源動力,有需要才有進步! 隨著CPU製造工藝的發展,二級緩存也能輕易的集成在CPU內核中,容量也在逐年提升。用集成在CPU內部與否來定義一、二級緩存,已不確切。而且隨著二級緩存被集成入CPU內核中,以往二級緩存與CPU大差距分頻的情況也被改變,此時其以相同於主頻的速度工作,可以為CPU提供更高的傳輸速度。同一核心的CPU高低端之分往往也是在二級緩存上有差異,由此可見二級緩存對於CPU的重要性。
CPU產品中,一級緩存的容量基本在4KB到64KB之間,二級緩存的容量則分為128KB、256KB、512KB、1MB、2MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高。
雙核心CPU的二級緩存比較特殊,和以前的單核心CPU相比,最重要的就是兩個內核的緩存所保存的數據要保持一致,否則就會出現錯誤,為了解決這個問題不同的CPU使用了不同的辦法。

熱點內容
安卓圖片如何添加蘋果的水墨印 發布:2025-01-16 08:18:12 瀏覽:730
fmp腳本 發布:2025-01-16 08:12:23 瀏覽:230
nagios自定義腳本 發布:2025-01-16 08:09:52 瀏覽:364
安卓為什麼下不了方舟生存進化 發布:2025-01-16 08:02:32 瀏覽:194
如何登錄男朋友的微信密碼 發布:2025-01-16 07:41:14 瀏覽:194
寶駿解壓流程 發布:2025-01-16 07:35:35 瀏覽:2
兩匹壓縮機多少錢 發布:2025-01-16 07:29:19 瀏覽:635
個人pc搭建游戲伺服器 發布:2025-01-16 07:27:09 瀏覽:970
存儲剩餘照片 發布:2025-01-16 07:25:01 瀏覽:50
ftp解除限制上傳文件個數 發布:2025-01-16 07:16:26 瀏覽:348