當前位置:首頁 » 文件管理 » 線程級別緩存

線程級別緩存

發布時間: 2022-06-29 22:55:50

『壹』 三級緩存重要還是多線程重要

這問題有點象是高端雙核和中端四核一樣的對比。。。。沒有重要不重要,要看實際應用,現在的CPU甭管他有無三級緩存性能都已經非常強大了,實際應用就看你的具體使用習慣和應用軟體。。。。三級緩存普遍都是高端雙核或者高端四核採用了的,而超線程類似於加強多任務速度一樣,雖然是模擬雙核,但是畢竟多出一個模擬核心,在相對多任務環境中比起帶有三級緩存的CPU要有優勢。。。但是如果朋友沒有相對的多任務運行習慣,帶有三級緩存的CPU是你要首先考慮的,速度更加理想。。如果單就這個問題而言,三級換成重要性要比多線程重要,畢竟日常使用中多任務需求的朋友太少了,倒是非常注重單核心能力,很多朋友忽視三級緩存的重要性,三級緩存在運行大型軟體尤其是大型3D游戲時相比較不帶三級緩存的CPU優勢明顯,所以有高手戲稱速龍ⅡX4 6系就是一殘廢,很多對性能比較在意的都是直接選擇哪怕雙核的高端羿龍雙核產品,也不選擇速龍四核。。。。。還有不清楚,請你追問。。。真心希望能給你幫助!

『貳』 ●●●請問CPU的線程,2/3級緩存,前端匯流排這些詞是指的什麼意思

1.線程:簡單理解就是處理進程的流水線,一般來說CPU有幾個內核就有幾個線程,不過對於intel擁有超線程技術的CPU,他們的線程數要多一倍出來。如I7系列位4核8線程。
2.緩存:簡單理解就是一個與CPU通訊的快速倉庫。CPU諾從內存中直接調用數據,會受到帶寬或走北橋問題而有較大延遲,而緩存速度非常快,所以就讓內核直接到緩存中找數據就行了。內存中的數據會調用到緩存中,內核去緩存中找,但不一定每次都命中,迫不得已還是得到內存去的。目前CPU的順序為:一級緩存→二級緩存→三級緩存→內存。
3.前端匯流排:簡稱FSB,是CPU連接到北橋晶元的匯流排,相當於高速公路。北橋是橋接設備,用於CPU與顯卡和內存等通訊,FSB頻率越大,速度越快,性能越高。不過目前如P55主板北橋功能集成於CPU中,北橋沒掉了,也沒有了FSB了。
以上是CPU參數中的部分,不能簡單的用大小來比較CPU的好壞,因為架構不同所需要的參數規格也不同。但對於同架構同系列的可以通過這些參數比較,線程越多,緩存越大,FSB越大,性能越強。
對於跨不同商家的產品,如intel和AMD的,只能通過測試來比較,從參數上比較意義不大。

『叄』 處理器的緩存與線程各有什麼作用

樓上回答很對 這都是核心的兩個重要參數 緩存越大 越好 線程數越多越好 處理器的能力就越強 緩存是相當於內存的 功能 線程 就是能夠處理軟體的 每個通道 相當於馬路越寬就越能跑很多車 相當於車道 越多就能能同時執行多種軟體

『肆』 CPU線程是什麼 一級 二級 三級緩存區別

同類行的cpu 自然是越大越好

速度 1>2>3 大小1<2<3

『伍』 java如何實現線程安全的緩存

簡單來說就是多線程的時候,多線程同時修改同一個類的時候,由於訪問順序隨機導致類功能出錯,至於線程安全類設計方法很多的,Java可以用synchronize標識類,只允許一個線程在同一時間訪問它,選擇線程安全的數據類型例如ArrayList,數組是不安全的,你可以多去網路查!

『陸』 在電腦上顯示的匯流排程.主頻.二級緩存它們分別代表這什麼意思

線程(thread),有時被稱為輕量級進程(Lightweight Process,LWP),是程序執行流的最小單元。一個標準的線程由線程ID,當前指令指針(PC),寄存器集合和堆棧組成。另外,線程是進程中的一個實體,是被系統獨立調度和分派的基本單位,線程自己不擁有系統資源,只擁有一點在運行中必不可少的資源,但它可與同屬一個進程的其它線程共享進程所擁有的全部資源。一個線程可以創建和撤消另一個線程,同一進程中的多個線程之間可以並發執行。由於線程之間的相互制約,致使線程在運行中呈現出間斷性。線程也有就緒、阻塞和運行三種基本狀態。
線程是程序中一個單一的順序控制流程.在單個程序中同時運行多個線程完成不同的工作,稱為多線程.
線程和進程的區別在於,子進程和父進程有不同的代碼和數據空間,而多個線程則共享數據空間,每個線程有自己的執行堆棧和程序計數器為其執行上下文.多線程主要是為了節約CPU時間,發揮利用,根據具體情況而定. 線程的運行中需要使用計算機的內存資源和CPU
CPU主頻在電子技術中,脈沖信號是一個按一定電壓幅度,一定時間間隔連續發出的脈沖信號。脈沖信號之間的時間間隔稱為周期;而將在單位時間(如1秒)內所產生的脈沖個數稱為頻率。頻率是描述周期性循環信號(包括脈沖信號)在單位時間內所出現的脈沖數量多少的計量名稱;頻率的標准計量單位是Hz(赫)。電腦中的系統時鍾就是一個典型的頻率相當精確和穩定的脈沖信號發生器。頻率在數學表達式中用「f」表示,其相應的單位有:Hz(赫)、kHz(千赫)、MHz(兆赫)、GHz(吉赫)。其中1GHz=1000MHz,1MHz=1000kHz,1kHz=1000Hz。計算脈沖信號周期的時間單位及相應的換算關系是:s(秒)、ms(毫秒)、μs(微秒)、ns(納秒),其中:1s=1000ms,1 ms=1000μs,1μs=1000ns。
CPU的主頻,即CPU內核工作的時鍾頻率(CPU Clock Speed)。通常所說的某某CPU是多少兆赫的,而這個多少兆赫就是「CPU的主頻」。很多人認為CPU的主頻就是其運行速度,其實不然。CPU的主頻表示在CPU內數字脈沖信號震盪的速度,與CPU實際的運算能力並沒有直接關系。主頻和實際的運算速度存在一定的關系,但目前還沒有一個確定的公式能夠定量兩者的數值關系,因為CPU的運算速度還要看CPU的流水線的各方面的性能指標(緩存、指令集,CPU的位數等等)。由於主頻並不直接代表運算速度,所以在一定情況下,很可能會出現主頻較高的CPU實際運算速度較低的現象。比如AMD公司的AthlonXP系列CPU大多都能以較低的主頻,達到英特爾公司的Pentium 4系列CPU較高主頻的CPU性能,所以AthlonXP系列CPU才以PR值的方式來命名。因此主頻僅是CPU性能表現的一個方面,而不代表CPU的整體性能。
CPU的主頻不代表CPU的速度,但提高主頻對於提高CPU運算速度卻是至關重要的。舉個例子來說,假設某個CPU在一個時鍾周期內執行一條運算指令,那麼當CPU運行在100MHz主頻時,將比它運行在50MHz主頻時速度快一倍。因為100MHz的時鍾周期比50MHz的時鍾周期佔用時間減少了一半,也就是工作在100MHz主頻的CPU執行一條運算指令所需時間僅為10ns比工作在50MHz主頻時的20ns縮短了一半,自然運算速度也就快了一倍。只不過電腦的整體運行速度不僅取決於CPU運算速度,還與其它各分系統的運行情況有關,只有在提高主頻的同時,各分系統運行速度和各分系統之間的數據傳輸速度都能得到提高後,電腦整體的運行速度才能真正得到提高。
提高CPU工作主頻主要受到生產工藝的限制。由於CPU是在半導體矽片上製造的,在矽片上的元件之間需要導線進行聯接,由於在高頻狀態下要求導線越細越短越好,這樣才能減小導線分布電容等雜散干擾以保證CPU運算正確。因此製造工藝的限制,是CPU主頻發展的最大障礙之一。
內存主頻和CPU主頻一樣,習慣上被用來表示內存的速度,它代表著該內存所能達到的最高工作頻率。內存主頻是以MHz(兆赫)為單位來計量的。內存主頻越高在一定程度上代表著內存所能達到的速度越快。內存主頻決定著該內存最高能在什麼樣的頻率正常工作。目前較為主流的內存頻率是333MHz和400MHz的DDR內存,以及667MHz和800MHz的DDR2內存。
大家知道,計算機系統的時鍾速度是以頻率來衡量的。晶體振盪器控制著時鍾速度,在石英晶片上加上電壓,其就以正弦波的形式震動起來,這一震動可以通過晶片的形變和大小記錄下來。晶體的震動以正弦調和變化的電流的形式表現出來,這一變化的電流就是時鍾信號。而內存本身並不具備晶體振盪器,因此內存工作時的時鍾信號是由主板晶元組的北橋或直接由主板的時鍾發生器提供的,也就是說內存無法決定自身的工作頻率,其實際工作頻率是由主板來決定的。
DDR內存和DDR2內存的頻率可以用工作頻率和等效頻率兩種方式表示,工作頻率是內存顆粒實際的工作頻率,但是由於DDR內存可以在脈沖的上升和下降沿都傳輸數據,因此傳輸數據的等效頻率是工作頻率的兩倍;而DDR2內存每個時鍾能夠以四倍於工作頻率的速度讀/寫數據,因此傳輸數據的等效頻率是工作頻率的四倍。例如DDR 200/266/333/400的工作頻率分別是100/133/166/200MHz,而等效頻率分別是200/266/333/400MHz;DDR2 400/533/667/800的工作頻率分別是100/133/166/200MHz,而等效頻率分別是400/533/667/800MHz。
內存非同步工作模式包含多種意義,在廣義上凡是內存工作頻率與CPU的外頻不一致時都可以稱為內存非同步工作模式。首先,最早的內存非同步工作模式出現在早期的主板晶元組中,可以使內存工作在比CPU外頻高33MHz或者低33MHz的模式下(注意只是簡單相差33MHz),從而可以提高系統內存性能或者使老內存繼續發揮余熱。其次,在正常的工作模式(CPU不超頻)下,目前不少主板晶元組也支持內存非同步工作模式,例如Intel 910GL晶元組,僅僅只支持533MHz FSB即133MHz的CPU外頻,但卻可以搭配工作頻率為133MHz的DDR 266、工作頻率為166MHz的DDR 333和工作頻率為200MHz的DDR 400正常工作(注意此時其CPU外頻133MHz與DDR 400的工作頻率200MHz已經相差66MHz了),只不過搭配不同的內存其性能有差異罷了。再次,在CPU超頻的情況下,為了不使內存拖CPU超頻能力的後腿,此時可以調低內存的工作頻率以便於超頻,例如AMD的Socket 939介面的Opteron 144非常容易超頻,不少產品的外頻都可以輕松超上300MHz,而此如果在內存同步的工作模式下,此時內存的等效頻率將高達DDR 600,這顯然是不可能的,為了順利超上300MHz外頻,我們可以在超頻前在主板BIOS中把內存設置為DDR 333或DDR 266,在超上300MHz外頻之後,前者也不過才DDR 500(某些極品內存可以達到),而後者更是只有DDR 400(完全是正常的標准頻率),由此可見,正確設置內存非同步模式有助於超頻成功。
說到處理器主頻,就要提到與之密切相關的兩個概念:倍頻與外頻,外頻是CPU的基準頻率,單位也是MHz。外頻是CPU與主板之間同步運行的速度,而且目前的絕大部分電腦系統中外頻也是內存與主板之間的同步運行的速度,在這種方式下,可以理解為CPU的外頻直接與內存相連通,實現兩者間的同步運行狀態;倍頻即主頻與外頻之比的倍數。主頻、外頻、倍頻,其關系式:主頻=外頻×倍頻。早期的CPU並沒有「倍頻」這個概念,那時主頻和系統匯流排的速度是一樣的。隨著技術的發展,CPU速度越來越快,內存、硬碟等配件逐漸跟不上CPU的速度了,而倍頻的出現解決了這個問題,它可使內存等部件仍然工作在相對較低的系統匯流排頻率下,而CPU的主頻可以通過倍頻來無限提升(理論上)。我們可以把外頻看作是機器內的一條生產線,而倍頻則是生產線的條數,一台機器生產速度的快慢(主頻)自然就是生產線的速度(外頻)乘以生產線的條數(倍頻)了。現在的廠商基本上都已經把倍頻鎖死,要超頻只有從外頻下手,通過倍頻與外頻的搭配來對主板的跳線或在BIOS中設置軟超頻,從而達到計算機總體性能的部分提升。所以在購買的時候要盡量注意CPU的外頻。
目前的主板晶元組幾乎都支持內存非同步,英特爾公司從810系列到目前較新的875系列都支持,而威盛公司則從693晶元組以後全部都提供了此功能。 CPU主頻的:「外頻」和「倍頻」外頻也叫CPU外部頻率或基頻,計量單位為「MHz「。CPU的主頻與外頻有一定的比例(倍頻)關系,由於內存和設置在主板上的L2Cache的工作頻率與CPU外頻同步,所以使用外頻高的CPU組裝電腦,其整體性能比使用相同主頻但外頻低一級的CPU要高。這項參數關系試用於主板的選擇。
倍頻 系數是CPU主頻和外頻之間的比例關系,一般為:主頻=外頻*倍頻。Intel公司所有CPU(少數測試產品例外)的倍頻 通常已被鎖定(鎖頻),用戶無法用調整倍頻的方法來調整CPU的主頻,但仍然可以通過調整外頻為設置不同的主頻。AMD和其它公司的CPU未鎖頻。
網友的最佳解決辦法
右擊桌面上的「我的電腦」圖標,選擇「屬性」,就可以看到了!
最簡單的辦法就是開機安pasue break此時由於是系統開機自檢,就可以看出BIOS里的CPU頻率了!
用 CrystalCPUID軟體看。這是一款處理器信息檢測超頻工具。和WCPUID功能基本相同,但是CrystalCPUID對處理器支持的范圍更廣。CrystalCPUID支持幾乎所有類型的處理器檢測,最特別的是CrystalCPUID具備完整的處理器及系統資訊。頻、外頻和前端匯流排的關系CPU的主頻隨著技術進步和市場需求的提升而不斷提高,但外部設備所能承受的頻率極限與CPU核心無法相提並論,於是外頻的概念產生了。一般說來,我們現在能見到的標准外頻有100MHz、133MHz,甚至更高的166MHz,目前又有了200MHz的高外頻。CPU的工作頻率(主頻)包括兩部分:外頻與倍頻,兩者的乘積就是主頻。倍頻的全稱為倍頻系數。CPU的主頻與外頻之間存在著一個比值關系,這個比值就是倍頻系數,簡稱倍頻。倍頻可以從1.5一直到23以至更高,以0.5為一個間隔單位。外頻與倍頻相乘就是主頻(主頻=外頻×倍頻),所以其中任何一項提高都可以使CPU的主頻上升。
我們知道,電腦有許多配件,配件不同,速度也就不同。在286、386和早期的486電腦里,CPU的速度不是太高,和內存保持一樣的速度。後來隨著CPU速度的飛速提升,內存由於電氣結構關系,無法象CPU那樣提升很高的速度(就算現在內存達到400、533,但跟CPU的幾個G的速度相比,根本就不是一個級別的),於是造成了內存和CPU之間出現了速度差異。在486之前,CPU的主頻還處於一個較低的階段,CPU的主頻一般都等於外頻。而在486出現以後,由於CPU工作頻率不斷提高,而PC機的一些其他設備(如插卡、硬碟等)卻受到工藝的限制,不能承受更高的頻率,因此限制了CPU頻率的進一步提高。因此出現了倍頻技術,該技術能夠使CPU內部工作頻率變為外部頻率的倍數,從而通過提升倍頻而達到提升主頻的目的。倍頻技術就是使外部設備可以工作在一個較低外頻上,而CPU主頻是外頻的倍數。
在Pentium時代,CPU的外頻一般是60/66MHz,從Pentium Ⅱ 350開始,CPU外頻提高到100MHz,目前CPU外頻已經達到了200MHz。由於正常情況下外頻和內存匯流排頻率相同,所以當CPU外頻提高後,與內存之間的交換速度也相應得到了提高,對提高電腦整體運行速度影響較大。
CPU主頻、外頻和前端匯流排(FSB)頻率的單位都是Hz,目前通常是以MHz和GHz作為計量單位。需要注意的是不要將外頻和FSB頻率混為一談,我們時常在IT媒體上可以看見一些外頻800MHz、533MHz的詞語,其實這些是把外頻和FSB給混淆了。例如Pentium 4處理器的外頻目前有100MHz和133MHz兩種,由於Intel使用了四倍傳輸技術,受益於Pentium4處理器的四倍數據傳輸(QDR,Quad data Rate)匯流排。該技術可以使系統匯流排在一個時鍾周期內傳送4次數據,也就是傳輸效率是原來的4倍,相當於用了4條原來的前端匯流排來和內存發生聯系。在外頻仍然是133MHZ(如P4 Northwood處理器)的時候,前端匯流排的速度增加4倍變成了133×4=533MHZ,當外頻升到200MHZ,前端匯流排變成800MHZ,所以你會看到533前端匯流排的P4和800前端匯流排的P4,就是這樣來的。他們的實際外頻只有133和200。即FSB=CPU外頻×4。AMD Athlon 64處理器基於同樣的道理,也將會以200MHz外頻支持800MHz的前端匯流排頻率。但是對於AMD Athlon XP處理器,因其前端匯流排使用雙倍數據傳輸技術(DDR,Double Date Rate),它的前端匯流排頻率為外頻的兩倍,所以外頻200MHz的Athlon XP處理器的前端匯流排頻率為400MHz。對於早期的處理器,如Pentium III,其外頻和前端匯流排頻率是相等的。
前端匯流排的速度指的是CPU和北橋晶元間匯流排的速度,更實質性的表示了CPU和外界數據傳輸的速度。而外頻的概念是建立在數字脈沖信號震盪速度基礎之上的,也就是說,100MHz外頻特指數字脈沖信號在每秒鍾震盪一萬萬次,它更多的影響了PCI及其他匯流排的頻率。之所以前端匯流排與外頻這兩個概念容易混淆,主要的原因是在以前的很長一段時間里(主要是在Pentium 4出現之前和剛出現Pentium 4時),前端匯流排頻率與外頻是相同的,因此往往直接稱前端匯流排為外頻,最終造成這樣的誤會。隨著計算機技術的發展,人們發現前端匯流排頻率需要高於外頻,因此採用了QDR(Quad Date Rate)技術,或者其他類似的技術實現這個目的。這些技術的原理類似於AGP的2X或者4X,它們使得前端匯流排的頻率成為外頻的2倍、4倍甚至更高,從此之後前端匯流排和外頻的區別才開始被人們重視起來。
FSB是將CPU連接到北橋晶元的匯流排,也是CPU和外界交換數據的主要通道,因此前端匯流排的數據傳輸能力對整機性能影響很大,數據傳輸最大帶寬取決於所有同時傳輸數據的寬度和傳輸頻率,即數據帶寬=匯流排頻率×數據位寬÷8。例如Intel公司的PⅡ 333使用6 6MHz的前端匯流排,所以它與內存之間的數據交換帶寬為528MB/s =(66×64)/8,而其PⅡ 350則使用100MHz的前端匯流排,所以其數據交換峰值帶寬為800MB/s=(100×64)/8。再比如Intel 845晶元組只支持單通道DDR333內存,所以理論最高內存帶寬為333MHz×8Bytes(數據寬度)=2.7GB/s,而Intel 875平台在雙通道下的內存帶寬最高可達400MHz×8Bytes(數據寬度)×2=6.4GB/s。目前PC機常用的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz、1066MHz幾種。
提到外頻,我們就順便再說一下PCI工作頻率。目前電腦上的硬碟、音效卡等許多部件都是採用PCI匯流排形式,並且工作在33MHz的標准工作頻率之下。PCI匯流排頻率並不是固定的,而是取決於系統匯流排速度,也就是外頻。當外頻為66MHz時,主板通過二分頻技術令PCI設備保持33MHz的工作頻率;而當外頻提高到100MHz時,三分頻技術一樣可以令PCI設備的工作頻率不超標;在採用四分頻、五分頻技術的主板上,當外頻為133MHz、166MHz時,同樣可以讓PCI設備工作在33MHz。但是如果外頻並沒有採用上述標准頻率,而是定格如75MHz、83MHz之下,則PCI匯流排依然只能用二分頻技術,從而令PCI系統的工作頻率為37.5MHz甚至是41.5MHz。這樣一來,許多部件主必須工作在非額定頻率之下,是否能夠正常運作就要取決於產品本身的質量了。此時,硬碟能否撐得住是最關鍵的,因為PCI匯流排提升後,硬碟與CPU的數據交換速度增加,極有可能導致讀寫不正常,從而產生死機。
高外頻對系統的影響呈兩面性,有利因素可歸結為兩個,一是提升CPU乃至整體系統的執行效率,二是增加系統可以獲得的內存帶寬。兩者帶來的最終結果自然是整體性能明顯提升。
因此從上面我們可以看出,外頻對系統性能起著決定性的作用:CPU的主頻由倍頻和外頻綜合決定,前端匯流排頻率根據採用的傳輸技術由外頻來決定,主板的PCI頻率由外頻和分頻倍數決定,內存子系統的數據帶寬也受外頻決定。
高外頻系統需要有足夠的內存帶寬滿足系統需要。理論而言,前端匯流排與內存規格同步是最有效率的內存系統工作模式。要想充分發揮200MHz外頻的性能,內存帶寬就要與外頻、前端匯流排相匹配,否則,內存就會成為系統瓶頸。起初,英特爾之所以採用DDR內存,並不是看重了DDR的性能,而是因為RDRAM內存的價格過於昂貴,用戶無法接受。在主流市場上,英特爾所提供的內存規格一直無法滿足處理器帶寬的需要,始終給人以落後一步的感覺。只是在高端平台上,雙通道DDR和雙通道RDRAM內存才剛好夠用。
當外頻為200MHz時,前端匯流排達到800MHz後,帶寬也隨之提高到6.4GB/s,採用雙通道DDR400可以解決匹配問題,雙通道DDR400的內存帶寬將達到6.4GB/s,剛好可以滿足需要。對於Athlon XP來說,因其前端匯流排為400MHz時,帶寬為3.2GB/s,單通道DDR400內存帶寬為3.2GB/s,也可以滿足系統需求。因此,在未來的時間里,DDR400將會大行其道。這也是為什麼英特爾轉而支持DDR400的原因所在。
200MHz的外頻、800MHz的前端匯流排及配合雙通道DDR400,將PC的系統性能推到了一個新的台級,並且極大地滿足未來的需要,而且還具有相當大的升級空間。
CPU二級緩存CPU緩存(Cache Memory)位於CPU與內存之間的臨時存儲器,它的容量比內存小但交換速度快。在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個內存儲器(緩存+內存)就變成了既有緩存的高速度,又有內存的大容量的存儲系統了。緩存對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與緩存間的帶寬引起的。
緩存的工作原理是當CPU要讀取一個數據時,首先從緩存中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。
正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在緩存中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先緩存後內存。
最早先的CPU緩存是個整體的,而且容量很低,英特爾公司從Pentium時代開始把緩存進行了分類。當時集成在CPU內核中的緩存已不足以滿足CPU的需求,而製造工藝上的限制又不能大幅度提高緩存的容量。因此出現了集成在與CPU同一塊電路板上或主板上的緩存,此時就把 CPU內核集成的緩存稱為一級緩存,而外部的稱為二級緩存。一級緩存中還分數據緩存(Data Cache,D-Cache)和指令緩存(Instruction Cache,I-Cache)。二者分別用來存放數據和執行這些數據的指令,而且兩者可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。英特爾公司在推出Pentium 4處理器時,用新增的一種一級追蹤緩存替代指令緩存,容量為12KμOps,表示能存儲12K條微指令。
隨著CPU製造工藝的發展,二級緩存也能輕易的集成在CPU內核中,容量也在逐年提升。現在再用集成在CPU內部與否來定義一、二級緩存,已不確切。而且隨著二級緩存被集成入CPU內核中,以往二級緩存與CPU大差距分頻的情況也被改變,此時其以相同於主頻的速度工作,可以為CPU提供更高的傳輸速度。
二級緩存是CPU性能表現的關鍵之一,在CPU核心不變化的情況下,增加二級緩存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二級緩存上有差異,由此可見二級緩存對於CPU的重要性。
CPU在緩存中找到有用的數據被稱為命中,當緩存中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有二級緩存的CPU中,讀取一級緩存的命中率為80%。也就是說CPU一級緩存中找到的有用數據占數據總量的80%,剩下的20%從二級緩存中讀取。由於不能准確預測將要執行的數據,讀取二級緩存的命中率也在80%左右(從二級緩存讀到有用的數據占總數據的16%)。那麼還有的數據就不得不從內存調用,但這已經是一個相當小的比例了。目前的較高端的CPU中,還會帶有三級緩存,它是為讀取二級緩存後未命中的數據設計的—種緩存,在擁有三級緩存的CPU中,只有約5%的數據需要從內存中調用,這進一步提高了CPU的效率。
為了保證CPU訪問時有較高的命中率,緩存中的內容應該按一定的演算法替換。一種較常用的演算法是「最近最少使用演算法」(LRU演算法),它是將最近一段時間內最少被訪問過的行淘汰出局。因此需要為每行設置一個計數器,LRU演算法是把命中行的計數器清零,其他各行計數器加1。當需要替換時淘汰行計數器計數值最大的數據行出局。這是一種高效、科學的演算法,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出緩存,提高緩存的利用率。
CPU產品中,一級緩存的容量基本在4KB到64KB之間,二級緩存的容量則分為128KB、256KB、512KB、1MB、2MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高
CPU的二級緩存一般情況下你感覺不是很明顯。但是它的作用卻不可忽視。它是暫存CPU運算時的數據的。硬碟的緩存主要在讀/寫的時候很突出。是CPU的二級緩存是在運行時候突出出來的,兩者相比不是很明顯。
你認為如果大於521K的和1M的都一樣的話。英特爾恭喜為什麼還推出1M的呢?他為什麼不把1M的緩存分成兩個512K的放在兩個CPU上從而降低成本呢?你用兩台同樣配置的電腦放上兩個不同的CPU。一個放P42.8E(1M二級緩存)。另一個放P42.8C(521K)的。然後同時運行1G左右視頻轉換!你會發現2.8E的要比2.8C的快1/5左右。

『柒』 i3 i5 i7到底有什麼區別還有架構是什麼意思緩存和二級三級緩存

我們先來看一下i3 i5 i7的介面:(以酷睿2代為代表)i3:LGA 1155i5:LGA 1155i7:LGA 1155 LGA 1366上面可以看出I7介面有兩種,我們現在就拿這個來說。高端王者代表——LGA1366介面繼LGA775介面之後,Intel首先推出了LGA1366平台,定位高端旗艦系列。首顆採用LGA 1366介面的處理器代號為Bloomfield,採用經改良的Nehalem核心,基於45納米製程及原生四核心設計,內建8-12MB三級緩存。LGA1366平台再次引入了Intel超線程技術,同時QPI匯流排技術取代了由Pentium 4時代沿用至今的前端匯流排設計。最重要的是LGA1366平台是目前唯一支持三通道內存設計的平台,在實際的效能方面有了更大的提升,這也是LGA1366旗艦平台與其他平台定位上的一個主要區別 CPU與GPU的融合——LGA1156平台雖然最早是AMD提出了CPU與GPU整合的概念,但是卻被Intel搶了先。Clarkdale處理器首次將CPU與GPU整合在一起,不過並不是放在同一個核心裡,而是單獨的兩個核心。CPU核心採用全新32nm工藝製程,而GPU核心則採用了45nm工藝製程。為了搭配32nm工藝製程的Lynnfield/Clarkdale處理器,Intel改用全新LGA1156插槽,而這種全新的介面也涵蓋了從低端入門到高端的不同定位需要。但是在Clarkdale處理器上市初期,市場的反響並不是很好。首先從性能上來說雖然整合顯示核心相比上一代GMA有了提升,但是對比競爭對手AMD整合晶元組來看,性能上還存在較明顯的差距。其次從價格上來說AMD占據著更加明顯的優勢,Intel又因為介面的更換無法直接升級造成了用戶的抵觸情緒。還好憑借CPU性能的優勢逐漸彌補了用戶看到的種種不足,作為行業的大哥大,最終用戶還是妥協了。

熱點內容
我的世界手機版暖心伺服器 發布:2025-01-15 23:05:02 瀏覽:167
xts壓縮比 發布:2025-01-15 23:02:41 瀏覽:422
怎麼看聯系人存儲位置 發布:2025-01-15 22:47:14 瀏覽:793
旗艦560配置的是什麼發動機 發布:2025-01-15 22:40:59 瀏覽:625
sql多表連接查詢 發布:2025-01-15 22:33:12 瀏覽:220
android網路休眠 發布:2025-01-15 22:32:12 瀏覽:349
怎麼不下魯大師查看電腦配置 發布:2025-01-15 22:30:23 瀏覽:310
php頁面亂碼 發布:2025-01-15 22:28:49 瀏覽:846
夢幻寶貝腳本 發布:2025-01-15 22:27:36 瀏覽:256
安卓怎麼調成2g網 發布:2025-01-15 22:21:40 瀏覽:285