當前位置:首頁 » 存儲配置 » 分布式內存存儲

分布式內存存儲

發布時間: 2022-05-21 11:32:08

㈠ 什麼是分布式存儲

分布式存儲系統,是將數據分散存儲在多台獨立的設備上。傳統的網路存儲系統採用集中的存儲伺服器存放所有數據,存儲伺服器成為系統性能的瓶頸,也是可靠性和安全性的焦點,不能滿足大規模存儲應用的需要。分布式網路存儲系統採用可擴展的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息,它不但提高了系統的可靠性、可用性和存取效率,還易於擴展。


(1)分布式內存存儲擴展閱讀:

分布式存儲,集中管理,在這個方案中,共有三級:

1、上級監控中心:上級監控中心通常只有一個,主要由數字矩陣、認證伺服器和VSTARClerk軟體等。

2、本地監控中心:本地監控中心可以有多個,可依據地理位置設置,或者依據行政隸屬關系設立,主要由數字矩陣、流媒體網關、iSCSI存儲設備、VSTARRecorder軟體等組成;音視頻的數據均主要保存在本地監控中心,這就是分布式存儲的概念。

3、監控前端:主要由攝像頭、網路視頻伺服器組成,其中VE4000系列的網路視頻伺服器可以帶硬碟,該硬碟主要是用於網路不暢時,暫時對音視頻數據進行保存,或者需要在前端保存一些重要數據的情況。

㈡ 分布式緩存是什麼

分布式緩存主要用於在高並發環境下,減輕資料庫的壓力,提高系統的響應速度和並發吞吐。當大量的讀、寫請求湧向資料庫時,磁碟的處理速度與內存顯然不在一個量級,因此,在資料庫之前加一層緩存,能夠顯著提高系統的響應速度,並降低資料庫的壓力。作為傳統的關系型資料庫,MySQL提供完整的ACID操作,支持豐富的數據類型、強大的關聯查詢、where語句等,能夠非常客易地建立查詢索引,執行復雜的內連接、外連接、求和、排序、分組等操作,並且支持存儲過程、函數等功能,產品成熟度高,功能強大。但是,對於需要應對高並發訪問並且存儲海量數據的場景來說,出於對性能的考慮,不得不放棄很多傳統關系型資料庫原本強大的功能,犧牲了系統的易用性,並且使得系統的設計和管理變得更為復雜。這也使得在過去幾年中,流行著另一種新的存儲解決方案——NoSQL,它與傳統的關系型資料庫最大的差別在於,它不使用SQL作為查詢語言來查找數據,而採用key-value形式進行查找,提供了更高的查詢效率及吞吐,並且能夠更加方便地進行擴展,存儲海量數據,在數千個節點上進行分區,自動進行數據的復制和備份。在分布式系統中,消息作為應用間通信的一種方式,得到了十分廣泛的應用。消息可以被保存在隊列中,直到被接收者取出,由於消息發送者不需要同步等待消息接收者的響應,消息的非同步接收降低了系統集成的耦合度,提升了分布式系統協作的效率,使得系統能夠更快地響應用戶,提供更高的吞吐。
當系統處於峰值壓力時,分布式消息隊列還能夠作為緩沖,削峰填谷,緩解集群的壓力,避免整個系統被壓垮。垂直化的搜索引擎在分布式系統中是一個非常重要的角色,它既能夠滿足用戶對於全文檢索、模糊匹配的需求,解決資料庫like查詢效率低下的問題,又能夠解決分布式環境下,由於採用分庫分表,或者使用NoSQL資料庫,導致無法進行多表關聯或者進行復雜查詢的問題。

㈢ 分布式緩存主要用在高並發環境下的作用

分布式緩存主要用在高並發環境下,減輕資料庫的壓力,提高系統的響應速度和並發吞吐。當大量的讀、寫請求湧向資料庫時,磁碟的處理速度與內存顯然不在一個量級,因此,在資料庫之前加一層緩存,能夠顯著提高系統的響應速度,並降低資料庫的壓力。作為傳統的關系型資料庫,MySQL提供完整的ACID操作,支持豐富的數據類型、強大的關聯查詢、where語句等,能夠非常客易地建立查詢索引,執行復雜的內連接、外連接、求和、排序、分組等操作,並且支持存儲過程、函數等功能,產品成熟度高,功能強大。但是,對於需要應對高並發訪問並且存儲海量數據的場景來說,出於對性能的考慮,不得不放棄很多傳統關系型資料庫原本強大的功能,犧牲了系統的易用性,並且使得系統的設計和管理變得更為復雜。這也使得在過去幾年中,流行著另一種新的存儲解決方案——NoSQL,它與傳統的關系型資料庫最大的差別在於,它不使用SQL作為查詢語言來查找數據,而採用key-value形式進行查找,提供了更高的查詢效率及吞吐,並且能夠更加方便地進行擴展,存儲海量數據,在數千個節點上進行分區,自動進行數據的復制和備份。在分布式系統中,消息作為應用間通信的一種方式,得到了十分廣泛的應用。消息可以被保存在隊列中,直到被接收者取出,由於消息發送者不需要同步等待消息接收者的響應,消息的非同步接收降低了系統集成的耦合度,提升了分布式系統協作的效率,使得系統能夠更快地響應用戶,提供更高的吞吐。
當系統處於峰值壓力時,分布式消息隊列還能夠作為緩沖,削峰填谷,緩解集群的壓力,避免整個系統被壓垮。垂直化的搜索引擎在分布式系統中是一個非常重要的角色,它既能夠滿足用戶對於全文檢索、模糊匹配的需求,解決資料庫like查詢效率低下的問題,又能夠解決分布式環境下,由於採用分庫分表,或者使用NoSQL資料庫,導致無法進行多表關聯或者進行復雜查詢的問題。

㈣ 什麼是分布式存儲系統

分布式存儲系統,是將數據分散存儲在多台獨立的設備上。傳統的網路存儲系統採用集中的存儲伺服器存放所有數據,存儲伺服器成為系統性能的瓶頸,也是可靠性和安全性的焦點,不能滿足大規模存儲應用的需要。分布式網路存儲系統採用可擴展的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息,它不但提高了系統的可靠性、可用性和存取效率,還易於擴展。


(4)分布式內存存儲擴展閱讀:

分布式存儲,集中管理,在這個方案中,共有三級:

1、上級監控中心:上級監控中心通常只有一個,主要由數字矩陣、認證伺服器和VSTARClerk軟體等。

2、本地監控中心:本地監控中心可以有多個,可依據地理位置設置,或者依據行政隸屬關系設立,主要由數字矩陣、流媒體網關、iSCSI存儲設備、VSTARRecorder軟體等組成;音視頻的數據均主要保存在本地監控中心,這就是分布式存儲的概念。

3、監控前端:主要由攝像頭、網路視頻伺服器組成,其中VE4000系列的網路視頻伺服器可以帶硬碟,該硬碟主要是用於網路不暢時,暫時對音視頻數據進行保存,或者需要在前端保存一些重要數據的情況。

㈤ 什麼是HDFS硬碟分布式存儲

Namenode 是一個中心伺服器,單一節點(簡化系統的設計和實現),負責管理文件系統的名字空間(namespace)以及客戶端對文件的訪問。
文件操作,NameNode 負責文件元數據的操作,DataNode負責處理文件內容的讀寫請求,跟文件內容相關的數據流不經過NameNode,只會詢問它跟哪個DataNode聯系,否則NameNode會成為系統的瓶頸。
副本存放在哪些DataNode上由 NameNode來控制,根據全局情況做出塊放置決定,讀取文件時NameNode盡量讓用戶先讀取最近的副本,降低帶塊消耗和讀取時延
Namenode 全權管理數據塊的復制,它周期性地從集群中的每個Datanode接收心跳信號和塊狀態報告(Blockreport)。接收到心跳信號意味著該Datanode節點工作正常。塊狀態報告包含了一個該Datanode上所有數據塊的列表。

NameNode支持對HDFS中的目錄、文件和塊做類似文件系統的創建、修改、刪除、列表文件和目錄等基本操作。 塊存儲管理,在整個HDFS集群中有且只有唯一一個處於active狀態NameNode節點,該節點負責對這個命名空間(HDFS)進行管理。

1、Name啟動的時候首先將fsimage(鏡像)載入內存,並執行(replay)編輯日誌editlog的的各項操作;
2、一旦在內存中建立文件系統元數據映射,則創建一個新的fsimage文件(這個過程不需SecondaryNameNode) 和一個空的editlog;
3、在安全模式下,各個datanode會向namenode發送塊列表的最新情況;
4、此刻namenode運行在安全模式。即NameNode的文件系統對於客服端來說是只讀的。(顯示目錄,顯示文件內容等。寫、刪除、重命名都會失敗);
5、NameNode開始監聽RPC和HTTP請求
解釋RPC:RPC(Remote Procere Call Protocol)——遠程過程通過協議,它是一種通過網路從遠程計算機程序上請求服務,而不需要了解底層網路技術的協議;
6、系統中數據塊的位置並不是由namenode維護的,而是以塊列表形式存儲在datanode中;
7、在系統的正常操作期間,namenode會在內存中保留所有塊信息的映射信息。
存儲文件,文件被分成block存儲在磁碟上,為保證數據安全,文件會有多個副本 namenode和client的指令進行存儲或者檢索block,並且周期性的向namenode節點報告它存了哪些文件的blo
文件切分成塊(默認大小128M),以塊為單位,每個塊有多個副本存儲在不同的機器上,副本數可在文件生成時指定(默認3)
NameNode 是主節點,存儲文件的元數據如文件名,文件目錄結構,文件屬性(生成時間,副本數,文件許可權),以及每個文件的塊列表以及塊所在的DataNode等等
DataNode 在本地文件系統存儲文件塊數據,以及塊數據的校驗和。
可以創建、刪除、移動或重命名文件,當文件創建、寫入和關閉之後不能修改文件內容。

NameNode啟動流程
1、Name啟動的時候首先將fsimage(鏡像)載入內存,並執行(replay)編輯日誌editlog的的各項操作;
2、一旦在內存中建立文件系統元數據映射,則創建一個新的fsimage文件(這個過程不需SecondaryNameNode) 和一個空的editlog;
3、在安全模式下,各個datanode會向namenode發送塊列表的最新情況;
4、此刻namenode運行在安全模式。即NameNode的文件系統對於客服端來說是只讀的。(顯示目錄,顯示文件內容等。寫、刪除、重命名都會失敗);
5、NameNode開始監聽RPC和HTTP請求
解釋RPC:RPC(Remote Procere Call Protocol)——遠程過程通過協議,它是一種通過網路從遠程計算機程序上請求服務,而不需要了解底層網路技術的協議;
6、系統中數據塊的位置並不是由namenode維護的,而是以塊列表形式存儲在datanode中;
7、在系統的正常操作期間,namenode會在內存中保留所有塊信息的映射信息。
HDFS的特點

優點:
1)處理超大文件
這里的超大文件通常是指百MB、數百TB大小的文件。目前在實際應用中,HDFS已經能用來存儲管理PB級的數據了。

2)流式的訪問數據
HDFS的設計建立在更多地響應"一次寫入、多次讀取"任務的基礎上。這意味著一個數據集一旦由數據源生成,就會被復制分發到不同的存儲節點中,然後響應各種各樣的數據分析任務請求。在多數情況下,分析任務都會涉及數據集中的大部分數據,也就是說,對HDFS來說,請求讀取整個數據集要比讀取一條記錄更加高效。

3)運行於廉價的商用機器集群上
Hadoop設計對硬體需求比較低,只須運行在低廉的商用硬體集群上,而無需昂貴的高可用性機器上。廉價的商用機也就意味著大型集群中出現節點故障情況的概率非常高。這就要求設計HDFS時要充分考慮數據的可靠性,安全性及高可用性。

缺點:
1)不適合低延遲數據訪問
如果要處理一些用戶要求時間比較短的低延遲應用請求,則HDFS不適合。HDFS是為了處理大型數據集分析任務的,主要是為達到高的數據吞吐量而設計的,這就可能要求以高延遲作為代價。

2)無法高效存儲大量小文件
因為Namenode把文件系統的元數據放置在內存中,所以文件系統所能容納的文件數目是由Namenode的內存大小來決定。一般來說,每一個文件、文件夾和Block需要佔據150位元組左右的空間,所以,如果你有100萬個文件,每一個占據一個Block,你就至少需要300MB內存。當前來說,數百萬的文件還是可行的,當擴展到數十億時,對於當前的硬體水平來說就沒法實現了。還有一個問題就是,因為Map task的數量是由splits來決定的,所以用MR處理大量的小文件時,就會產生過多的Maptask,線程管理開銷將會增加作業時間。舉個例子,處理10000M的文件,若每個split為1M,那就會有10000個Maptasks,會有很大的線程開銷;若每個split為100M,則只有100個Maptasks,每個Maptask將會有更多的事情做,而線程的管理開銷也將減小很多。

1280M 1個文件 10block*150位元組 = 1500 位元組 =1.5KB
1280M 12.8M 100個 100個block*150位元組 = 15000位元組 = 15KB

3)不支持多用戶寫入及任意修改文件
在HDFS的一個文件中只有一個寫入者,而且寫操作只能在文件末尾完成,即只能執行追加操作。目前HDFS還不支持多個用戶對同一文件的寫操作,以及在文件任意位置進行修改。

四、HDFS文件 讀寫流程
4.1 讀文件流程

(1) 打開分布式文件
調用 分布式文件 DistributedFileSystem.open()方法。
(2) 從 NameNode 獲得 DataNode 地址
DistributedFileSystem 使用 RPC 調用 NameNode, NameNode返回存有該副本的 DataNode 地址, DistributedFileSystem 返回一個輸入流 FSDataInputStream對象, 該對象封存了輸入流DFSInputStream。
(3) 連接到DataNode
調用 輸入流 FSDataInputStream 的 read() 方法, 從而輸入流DFSInputStream 連接 DataNodes。
(4) 讀取DataNode
反復調用 read()方法, 從而將數據從 DataNode 傳輸到客戶端。
(5) 讀取另外的DataNode直到完成
到達塊的末端時候, 輸入流 DFSInputStream 關閉與DataNode 連接,尋找下一個 DataNode。
(6) 完成讀取, 關閉連接
即調用輸入流 FSDataInputStream.close() 。

4.2 寫文件流程

(1) 發送創建文件請求: 調用分布式文件系統DistributedFileSystem.create()方法;
(2) NameNode中創建文件記錄: 分布式文件系統DistributedFileSystem 發送 RPC 請求給namenode, namenode 檢查許可權後創建一條記錄, 返回輸出流 FSDataOutputStream, 封裝了輸出流 DFSOutputDtream;
(3) 客戶端寫入數據: 輸出流 DFSOutputDtream 將數據分成一個個的數據包, 並寫入內部隊列。 DataStreamer 根據 DataNode 列表來要求 namenode 分配適合的新塊來存儲數據備份。一組DataNode 構成管線(管線的 DataNode 之間使用 Socket 流式通信)
(4) 使用管線傳輸數據: DataStreamer 將數據包流式傳輸到管線第一個DataNode, 第一個DataNode 再傳到第二個DataNode ,直到完成。
(5) 確認隊列: DataNode 收到數據後發送確認, 管線的DataNode所有的確認組成一個確認隊列。 所有DataNode 都確認, 管線數據包刪除。
(6) 關閉: 客戶端對數據量調用close() 方法。 將剩餘所有數據寫入DataNode管線, 並聯系NameNode且發送文件寫入完成信息之前等待確認。
(7) NameNode確認
(8) 故障處理: 若過程中發生故障, 則先關閉管線, 把隊列中所有數據包添加回去隊列, 確保數據包不漏。 為另一個正常DataNode的當前數據塊指定一個新的標識, 並將該標識傳送給NameNode, 一遍故障DataNode在恢復後刪除上面的不完整數據塊. 從管線中刪除故障DataNode 並把餘下的數據塊寫入餘下正常的DataNode。 NameNode發現復本兩不足時, 會在另一個節點創建一個新的復本

㈥ 什麼是靈動的分布式存儲系統

分布式存儲簡單的來說,就是將數據分散存儲到多個存儲伺服器上,並將這些分散的存儲資源構成一個虛擬的存儲設備,實際上數據分散的存儲在企業的各個角落。

分布式存儲架構由三個部分組成:客戶端、元數據伺服器和數據伺服器。客戶端負責發送讀寫請求,緩存文件元數據和文件數據。元數據伺服器負責管理元數據和處理客戶端的請求,是整個系統的核心組件。數據伺服器負責存放文件數據,保證數據的可用性和完整性。該架構的好處是性能和容量能夠同時拓展,系統規模具有很強的伸縮性。

基於區塊鏈的分布式存儲主要具有如下特點:

高性能:分布式存儲可以高效地管理讀緩存和寫緩存,並且支持自動的分級存儲,通過將熱點區域內的數據映射到高速存儲中,以提高系統響應速度。

分級存儲:允許高速存儲和低速存儲分開部署,或按任意比例混布,在不可預測的業務環境或者敏捷應用情況下,將存儲效益發揮極致。

多副本技術:分布式存儲採用多副本備份機制,並使用鏡像、條帶、分布式校驗等方式滿足用戶對於可靠性不同的需求。

容災與備份:分布式存儲支持多時間點快照備份,可同時提取多個時間點樣本同時恢復,降低了故障定位的難度,結合周期增量備份機制,確保數據安全高可用。

彈性擴展:得益於合理的分布式架構,還可預估並彈性擴展計算、存儲容量和性能,擴展後舊數據會自動遷移至新節點,實現負載均衡,避免單點過熱。

總之,分布式存儲在架構、靈活性與成本方面的獨特價值為政府、企業用戶等應用提供了更好的解決方案。

㈦ 共享內存和分布式內存的區別

1、多進程不一定優於多線程
2、共享內存沒有問題
3、Linux上的話,進程間共享數據可以用D-Bus,更可靠而且簡單。D-Bus也是廣播的。

如果要考慮高可靠性的話,那麼採集程序可以單獨一個進程,然後通過MOM,如ActiveMQ之類的用持久方式傳送數據,可以廣播也可以點對點,也支持分布式。監聽程序兩個,一個顯示一個保存至資料庫。這樣的話只要考慮採集程序的高可靠性就可以了,因為如果採用持久方式發送數據的話,對方沒有接收到數據的時候是會保存下來的。

㈧ 分布式存儲支持多節點,節點是什麼,一個磁碟還是一個主控

節點是什麼?

節點是存儲節點的簡稱,一般來說1個節點是1個存儲伺服器。

其中一個存儲節點壞了是否影響數據的訪問?

這個主要取決於你採取的數據保護措施,主要有以下幾種:

  • 多副本:同一份數據會保存多份(通常設置為 2 副本或 3 副本),即使副本所在的節點宕機也不會造成數據丟失;

  • HA(高可用):節點宕機時,該節點上的虛擬機自動遷移至集群內其它節點,降低業務中斷時間;

  • 機架感知:根據機房物理拓撲結構,將副本分配在不同的機架、機箱、主機上,有效減少甚至避免物理硬體(電源、交換機等)故障導致的數據丟失。理論上,3 副本結合機架感知配置,系統可最多容忍 2 個機架上的主機全部失效;

  • 快照:為虛擬機打快照,在其發生故障時將數據恢復至快照狀態;

  • 雙活:同城雙數據中心,災難時無損快速恢復業務(RPO=0);

  • 備份:異地主備數據中心,災難時盡可能挽回數據損失。

熱點內容
直鏈雲存儲 發布:2025-01-16 13:19:30 瀏覽:724
電腦主機伺服器多少錢 發布:2025-01-16 13:00:28 瀏覽:663
linuxoracle操作 發布:2025-01-16 12:40:50 瀏覽:45
河北存儲服務價格 發布:2025-01-16 12:39:21 瀏覽:343
掛機伺服器的搭建 發布:2025-01-16 12:34:07 瀏覽:415
安卓怎麼刪除信任憑證 發布:2025-01-16 12:22:06 瀏覽:336
代理編譯 發布:2025-01-16 12:07:59 瀏覽:794
伺服器為什麼老是無響應 發布:2025-01-16 12:07:59 瀏覽:892
安卓怎麼傳軟體到蘋果 發布:2025-01-16 12:01:28 瀏覽:953
pythonforzip 發布:2025-01-16 11:59:46 瀏覽:910