內容中台存儲
① 數據中台是什麼
數據中台是指通過數據技術,對海量數據進行採集、計算、存儲、加工,同時統一標准和口徑。
數據中台把數據統一之後,會形成標准數據,再進行存儲,形成大數據資產層,進而為客戶提供高效服務。這些服務跟企業的業務有較強的關聯性,是這個企業獨有的且能復用的,它是企業業務和數據的沉澱,其不僅能降低重復建設、減少煙囪式協作的成本,也是差異化競爭優勢所在。
中台的目標是提升效能、數據化運營、更好支持業務發展和創新,是多領域、多BU、多系統的負責協同。中台是平台化的自然演進,這種演進帶來「去中心化「的組織模式,突出對能力復用、協調控制的能力,以及業務創新的差異化構建能力。
(1)內容中台存儲擴展閱讀
1,回歸服務的本質-數據重用
浙江移動已經將2000個基礎模型作為所有數據服務開發的基礎,這些基礎模型做到了「書同文,車同軌」,無論應用的數據模型有多復雜,總是能溯源到2000張基礎表,這奠定了數據核對和認知的基礎,最大程度的避免了「重復數據抽取和維護帶來的成本浪費。」
2,數據中台需要不斷的業務滋養
在企業內,無論是專題、報表或取數,當前基本是煙囪式數據生產模式或者是項目制建設方式,必然導致數據知識得不到沉澱和持續發展,從而造成模型不能真正成為可重用的組件,無法支撐數據分析的快速響應和創新。其實,業務最不需要的就是模型的穩定,一個數據模型如果一味追求穩定不變,一定程度就是故步自封,這樣的做法必然導致其他的新的類似的數據模型產生。
數據模型不需要「穩定」,而需要不斷的滋養,只有在滋養中才能從最初的欄位單一到逐漸成長為企業最為寶貴的模型資產。
3,數據中台是培育業務創新的土壤
企業的數據創新一定要站在巨人的肩膀上,即從數據中台開始,不能總是從基礎做起,數據中台是數據創新效率的保障。研究過機器學習的都知道,沒有好的規整數據,數據准備的過程極其冗長,這也是數據倉庫模型的一個核心價值所在,比如運營商中要獲取3個月的ARPU數據,如果沒有融合模型的支撐,得自己從賬單一層層匯總及關聯,速度可想而知。
4,數據中台是人才成長的搖籃
原來新員工入職要獲得成長,一是靠人帶,二是找人問,三是自己登陸各種系統去看源代碼,這樣的學習比較支離破碎,其實很難了解全貌,無法知道什麼東西對於企業是最重要的,獲得的文檔資料也往往也是過了時的。
現在有了數據中台,很多成長問題就能解決,有了基礎模型,新人可以系統的學習企業有哪些基本數據能力,O域數據的增加更是讓其有更廣闊的視野,有了融合模型,新人可以知道有哪些主題域,從主題域切入去全局的理解公司的業務概念,有了標簽庫,新人可以獲得前人的所有智慧結晶,有了數據管理平台,新人能清晰的追溯數據、標簽和應用的來龍去脈,所有的知識都是在線的,最新的,意味著新人的高起點。
② 什麼是數據中台數據中台帶來了哪些價值
數據中台的含義和價值如下:
含義:簡單來說,數據中台就是企業用戶數據的鏈接樞紐,數據中台的搭建就是以數據創造價值的過程。它通過多維度、立體化的線上線下數據採集工具和方法,打破數據壁壘,講數據整合,並搭建數據平台。
價值:數據中台可以幫助企業進行數據加工、數據處理、數據分析和數據建模,讓數據價值達到最大化。利用數據中台可以打通營銷、銷售、服務、售後、復購等環節,全面管理多源數據,進而打造出一套高效的用戶管理體系,幫助企業進行用戶管理,提升用戶體驗,推進營銷數字化。
數據的范疇:
數據是指對客觀事件進行記錄並可以鑒別的符號,是對客觀事物的性質、狀態以及相互關系等進行記載的物理符號或這些物理符號的組合。它是可識別的、抽象的符號。
它不僅指狹義上的數字,還可以是具有一定意義的文字、字母、數字元號的組合、圖形、圖像、視頻、音頻等,也是客觀事物的屬性、數量、位置及其相互關系的抽象表示。例如,「0、1、2…」、「陰、雨、下降、氣溫」、「學生的檔案記錄、貨物的運輸情況」等都是數據。數據經過加工後就成為信息。
在計算機科學中,數據是所有能輸入計算機並被計算機程序處理的符號的介質的總稱,是用於輸入電子計算機進行處理,具有一定意義的數字、字母、符號和模擬量等的通稱。計算機存儲和處理的對象十分廣泛,表示這些對象的數據也隨之變得越來越復雜。
③ 數據中台和數據倉庫什麼關系
一定要說的話,那就是包含和被包含關系吧,數據倉庫是數據中台的一個元數據來源。WakeData數據中台的數據接入平台就是提供包含數據倉庫、日誌數據、外部數據等多源數據接入儲存的平台。
④ 到底什麼是數據中台
1.
數據中台是企業級的邏輯概念,體現企業 D2V(Data to Value)的能力,為業務...
2.
數據倉庫是一個相對具體的功能概念,是存儲和管理一個或多個主題數據的集合,為業務提供服務的...
3.
數據平台是在大數據基礎上出現的融合了結構化和非結構化數據的數據基礎平台,為業務提供服務的...
4.
數據中台距離業務更近,為業務提供速度更快的服務;
⑤ 數據中台和數據倉庫的區別是什麼
數據中台與數據倉庫沒有直接關系,在某個維度上他們為業務產生價值的形式有不同的側重,數據中台距離業務更近,能更快速地響應業務和應用開發的需求,可追溯、更精準。
1、概念上的區別
數據中台:企業級的邏輯概念,體現企業 D2V(Data to Value)的能力。
數據倉庫:一個相對具體的功能概念,是存儲和管理一個或多個主題數據的集合。
2、應用上的區別
數據中台:距離業務更近,通過將數據服務化之後提供給業務系統,為業務提供速度更快的服務,不僅限於分析型場景,也適用於交易型場景,強調共享和復用;
數據倉庫:支持管理決策分析,主要應用於BI;
3、價值上的區別
數據中台:建立在數據倉庫和大數據平台上,是加速企業從數據到業務價值過程的中間層。數據中台將數據生產為一個個數據 API 服務,以更高效的方式為業務提供服務。
數據倉庫:存儲的數據大多是根據需求有針對性抽取的結構化歷史數據,能夠生成各類報表,但這些報表都無法實時產生,因此,盡管能提供部分業務價值,但不能直接影響業務。
數據倉庫算產品,數據中台的精髓在於其機制,數據中台不是一個產品,而是一套體系,是一種組織架構,數據中台的開發和建設既可以建立企業數據倉庫基礎上,也可以建立在企業大數據平台基礎上,區別就在於企業的數據應用場景是否多元化。
⑥ 數據中台特徵
數據中台是中台的核心平台之一,簡單來說就是數據倉庫,是將傳統數據倉庫擴展到企業級所有數據的更大領域,對這些數據進行數據採集、數據建模、數據服務,並提供給前端開展不同維度的數據應用。
「數據中台」重構了企業數據系統的架構,將其分為三個層級:
底層
底層是數據收集層,就是數據湖,來自ERP、SRM等各個信息化系統中的業務數據、財務數據、大數據,結構化和非結構化數據直接匯入這層數據湖中,實現統一、集中的數據收集。
核心層
中間的核心層是數據存儲與計算層,核心是通過數據建模,形成服務化的數據應用。數據模型可以分為基礎模型、融合模型和挖掘模型。基礎模型一般是關系建模,主要實現數據的標准化;融合模型一般是維度建模,主要實現跨越數據的整合,整合的形式可以是匯總、關聯、解析;挖掘模型是偏應用的模型,作為企業的知識沉澱在中台內,可在數據應用端調取進行復用。
上層
上層是業務應用層,聚焦於對數據的應用和展現,核心層的數據模型可以共享到這個層級中並實現復用,賦能企業業務發展。數據應用通過將數據融入企業具體的業務經營場景中,基於豐富的數據模型開展場景化應用,用數據解決具體的業務問題,具體應用包括產銷協同分析、投資分析、產品定價、商品推薦、客戶畫像等,數據展現聚焦於以多樣化的形式展現數據分析應用的結果,這些形式包括管理駕駛艙、即席分析、自助報告、數據大屏、移動APP等,系統可以根據不同用戶在不同場景下的需求調整合適的展現方式。
⑦ 企業里有各種應用系統產生數據,是否應該建設數據中台來保存和分析它們
有條件的企業,將各種應用程序、IT設備的數據集中存儲保存,以便將來進行進一步數字化轉型時使用,是非常好的IT運維管理方式。
完全可以建設一個強勁的運維數據中台,建成後智能場景都可以在這個數據中台上拓展。
⑧ 誰能解釋下什麼是數據中台嗎
對於尋求數字化轉型的企業而言,要如何管理公司的數據資源,讓數據產生價值,有效服務前端業務呢?在2019年,呼聲最高的答案無疑是「數據中台」。
一、什麼是數據中台?
(一)前台、中台與後台
前台,即指由各類前台系統組成的前端平台。每個前台系統就是一個用戶觸點,即企業的最終用戶直接使用或交互的系統,是企業與最終用戶的交點。
後台,即指由後台系統組成的後端平台。每個後台系統一般管理了企業的一類核心資源(數據計算),例如財務系統,產品系統,客戶管理系統,倉庫物流管理系統等,這類系統構成了企業的後台。
前台與後台就像是兩個不同轉速的齒輪,前台由於要快速響應前端用戶的需求,講究的是快速創新迭代,所以要求轉速越快越好;而後台由於面對的是相對穩定的後端資源,而且系統陳舊復雜,甚至還受到法律法規等相關合規約束,所以往往是穩定至上,越穩定越好,轉速也自然是越慢越好。
隨著企業務的不斷發展,這種「前台後台」的齒輪速率「匹配失衡」的問題就逐步顯現出來。而中台就像是在前台與後台之間添加了一組「變速齒輪」,將前台與後台的速率進行匹配,是前台與後台的橋梁,它為前台而生,易於前台使用,將後台資源順滑流向用戶,響應用戶。
(二)「數據中台」的由來
「數據中台」並不是一個專業術語,簡單來說,它是指通過數據技術,對海量數據進行採集、計算、存儲、加工,且進行統一標准和口徑,以達到對企業的數據資產進行管理及應用為目的的平台。數據中台把數據統一後,形成標准數據,再進行存儲,形成大數據資產層,進而為客戶提供高效服務。
「數據中台」的概念是由阿里巴巴於2015年首次提出。阿里巴巴認為,數據中台是集方法論、工具、組織於一體的「快」、「准」、「全」、「統」、「通」的智能大數據體系。阿里人通過多年不懈的努力,在業務的不斷催化滋養下,將自己的技術和業務能力沉澱出一套綜合能力平台,具備了對於前台業務變化及創新的快速響應能力。
阿里巴巴中間件首席架構師、《阿里巴巴中台戰略思想與架構實踐》作者鍾華表示,在用阿里技術推動企業數字化轉型、建立數字中台的過程中,第一大挑戰是業務、其次才是技術。所謂業務挑戰,就是從業務視角,把共性的業務模塊沉澱到共享業務中台,把個性化的業務剝離出去後形成前台,形成「大中台,小前台」的新格局。
阿里巴巴發展數字中台的核心經驗是將原有的共享IT部門必須要找到極強的互聯網業務作為抓手,把自己變成核心業務部門,才能夠真正轉型成為企業的共享業務事業部,而不是某種變形的、換湯不換葯的共享IT部門,這也就是阿里共享業務事業部所講的「業務滋養」的概念。
二、企業為何要布局數據中台?
數據中台的核心價值,在於幫助企業將瑣碎的業務數據進行統一的規劃、管理、整合,形成符合企業特徵的價值實現通道——即企業的「數字資產」。在此過程中,數據中台所瞄準的主要問題是提高企業的數據管治能力、提供數據管理工具、提升數據利用效率。
對於傳統企業來說,要把能力中心構建起來,光做一個端還不夠,需要把這些端打通。一個「特種兵」沒有用處,它真正需要的是把自己的炮火和雷達能力都建立起來。數據中台最終的目標是讓「一切業務數據化,一切數據業務化」,將所有的數據匯聚到數據中台來,打通各個業務線的數據流轉、數據鏈路,了解企業數據現狀。
在為數據應用提供數據服務的時候,減少數據平台的重復開發,減少數據重復的存儲,從而減少企業成本。同時,建立統一的數據存儲、數據使用模型中心、能力中心,將相關業務領域的數據做匯聚,解決了數據互聯互通的訴求,實現數據價值上的一加一大於二。
在未來,數據中台將會是數字化經營的重要依託。通過數據的沉澱和技術手段,為用戶提供更優質的服務,數據中台就是基於這個理念而誕生的。通過數據中台,提升企業的效能,持續提高用戶的響應力,實現數據化的運營,更好地支持業務發展和創新。
如今,數據中台對很多企業來說,是一個非常有吸引力的數字化解決方案,但企業需要以業務需求來推動數字化進程,而不能一知半解就盲目進行,當企業在明確的業務需求驅動下,搭配完善的數字化解決方案,才能降低轉型失敗的幾率。
⑨ 數據中台到底是什麼
對於尋求數字化轉型的企業而言,要如何管理公司的數據資源,讓數據產生價值,有效服務前端業務呢?在2019年,呼聲最高的答案無疑是「數據中台」。
一、什麼是數據中台?
(一)前台、中台與後台
前台,即指由各類前台系統組成的前端平台。每個前台系統就是一個用戶觸點,即企業的最終用戶直接使用或交互的系統,是企業與最終用戶的交點。
後台,即指由後台系統組成的後端平台。每個後台系統一般管理了企業的一類核心資源(數據計算),例如財務系統,產品系統,客戶管理系統,倉庫物流管理系統等,這類系統構成了企業的後台。
前台與後台就像是兩個不同轉速的齒輪,前台由於要快速響應前端用戶的需求,講究的是快速創新迭代,所以要求轉速越快越好;而後台由於面對的是相對穩定的後端資源,而且系統陳舊復雜,甚至還受到法律法規等相關合規約束,所以往往是穩定至上,越穩定越好,轉速也自然是越慢越好。
隨著企業務的不斷發展,這種「前台後台」的齒輪速率「匹配失衡」的問題就逐步顯現出來。而中台就像是在前台與後台之間添加了一組「變速齒輪」,將前台與後台的速率進行匹配,是前台與後台的橋梁,它為前台而生,易於前台使用,將後台資源順滑流向用戶,響應用戶。
(二)「數據中台」的由來
「數據中台」並不是一個專業術語,簡單來說,它是指通過數據技術,對海量數據進行採集、計算、存儲、加工,且進行統一標准和口徑,以達到對企業的數據資產進行管理及應用為目的的平台。數據中台把數據統一後,形成標准數據,再進行存儲,形成大數據資產層,進而為客戶提供高效服務。
「數據中台」的概念是由阿里巴巴於2015年首次提出。阿里巴巴認為,數據中台是集方法論、工具、組織於一體的「快」、「准」、「全」、「統」、「通」的智能大數據體系。阿里人通過多年不懈的努力,在業務的不斷催化滋養下,將自己的技術和業務能力沉澱出一套綜合能力平台,具備了對於前台業務變化及創新的快速響應能力。
阿里巴巴中間件首席架構師、《阿里巴巴中台戰略思想與架構實踐》作者鍾華表示,在用阿里技術推動企業數字化轉型、建立數字中台的過程中,第一大挑戰是業務、其次才是技術。所謂業務挑戰,就是從業務視角,把共性的業務模塊沉澱到共享業務中台,把個性化的業務剝離出去後形成前台,形成「大中台,小前台」的新格局。
阿里巴巴發展數字中台的核心經驗是將原有的共享IT部門必須要找到極強的互聯網業務作為抓手,把自己變成核心業務部門,才能夠真正轉型成為企業的共享業務事業部,而不是某種變形的、換湯不換葯的共享IT部門,這也就是阿里共享業務事業部所講的「業務滋養」的概念。
二、企業為何要布局數據中台?
數據中台的核心價值,在於幫助企業將瑣碎的業務數據進行統一的規劃、管理、整合,形成符合企業特徵的價值實現通道——即企業的「數字資產」。在此過程中,數據中台所瞄準的主要問題是提高企業的數據管治能力、提供數據管理工具、提升數據利用效率。
對於傳統企業來說,要把能力中心構建起來,光做一個端還不夠,需要把這些端打通。一個「特種兵」沒有用處,它真正需要的是把自己的炮火和雷達能力都建立起來。數據中台最終的目標是讓「一切業務數據化,一切數據業務化」,將所有的數據匯聚到數據中台來,打通各個業務線的數據流轉、數據鏈路,了解企業數據現狀。
在為數據應用提供數據服務的時候,減少數據平台的重復開發,減少數據重復的存儲,從而減少企業成本。同時,建立統一的數據存儲、數據使用模型中心、能力中心,將相關業務領域的數據做匯聚,解決了數據互聯互通的訴求,實現數據價值上的一加一大於二。
在未來,數據中台將會是數字化經營的重要依託。通過數據的沉澱和技術手段,為用戶提供更優質的服務,數據中台就是基於這個理念而誕生的。通過數據中台,提升企業的效能,持續提高用戶的響應力,實現數據化的運營,更好地支持業務發展和創新。
如今,數據中台對很多企業來說,是一個非常有吸引力的數字化解決方案,但企業需要以業務需求來推動數字化進程,而不能一知半解就盲目進行,當企業在明確的業務需求驅動下,搭配完善的數字化解決方案,才能降低轉型失敗的幾率。
⑩ 數據中台是分析數據的地方嗎
對於尋求數字化轉型的企業而言,要如何管理公司的數據資源,讓數據產生價值,有效服務前端業務呢?在2019年,呼聲最高的答案無疑是「數據中台」。
一、什麼是數據中台?
(一)前台、中台與後台
前台,即指由各類前台系統組成的前端平台。每個前台系統就是一個用戶觸點,即企業的最終用戶直接使用或交互的系統,是企業與最終用戶的交點。
後台,即指由後台系統組成的後端平台。每個後台系統一般管理了企業的一類核心資源(數據計算),例如財務系統,產品系統,客戶管理系統,倉庫物流管理系統等,這類系統構成了企業的後台。
前台與後台就像是兩個不同轉速的齒輪,前台由於要快速響應前端用戶的需求,講究的是快速創新迭代,所以要求轉速越快越好;而後台由於面對的是相對穩定的後端資源,而且系統陳舊復雜,甚至還受到法律法規等相關合規約束,所以往往是穩定至上,越穩定越好,轉速也自然是越慢越好。
隨著企業務的不斷發展,這種「前台後台」的齒輪速率「匹配失衡」的問題就逐步顯現出來。而中台就像是在前台與後台之間添加了一組「變速齒輪」,將前台與後台的速率進行匹配,是前台與後台的橋梁,它為前台而生,易於前台使用,將後台資源順滑流向用戶,響應用戶。
(二)「數據中台」的由來
「數據中台」並不是一個專業術語,簡單來說,它是指通過數據技術,對海量數據進行採集、計算、存儲、加工,且進行統一標准和口徑,以達到對企業的數據資產進行管理及應用為目的的平台。數據中台把數據統一後,形成標准數據,再進行存儲,形成大數據資產層,進而為客戶提供高效服務。
「數據中台」的概念是由阿里巴巴於2015年首次提出。阿里巴巴認為,數據中台是集方法論、工具、組織於一體的「快」、「准」、「全」、「統」、「通」的智能大數據體系。阿里人通過多年不懈的努力,在業務的不斷催化滋養下,將自己的技術和業務能力沉澱出一套綜合能力平台,具備了對於前台業務變化及創新的快速響應能力。
阿里巴巴中間件首席架構師、《阿里巴巴中台戰略思想與架構實踐》作者鍾華表示,在用阿里技術推動企業數字化轉型、建立數字中台的過程中,第一大挑戰是業務、其次才是技術。所謂業務挑戰,就是從業務視角,把共性的業務模塊沉澱到共享業務中台,把個性化的業務剝離出去後形成前台,形成「大中台,小前台」的新格局。
阿里巴巴發展數字中台的核心經驗是將原有的共享IT部門必須要找到極強的互聯網業務作為抓手,把自己變成核心業務部門,才能夠真正轉型成為企業的共享業務事業部,而不是某種變形的、換湯不換葯的共享IT部門,這也就是阿里共享業務事業部所講的「業務滋養」的概念。
二、企業為何要布局數據中台?
數據中台的核心價值,在於幫助企業將瑣碎的業務數據進行統一的規劃、管理、整合,形成符合企業特徵的價值實現通道——即企業的「數字資產」。在此過程中,數據中台所瞄準的主要問題是提高企業的數據管治能力、提供數據管理工具、提升數據利用效率。
對於傳統企業來說,要把能力中心構建起來,光做一個端還不夠,需要把這些端打通。一個「特種兵」沒有用處,它真正需要的是把自己的炮火和雷達能力都建立起來。數據中台最終的目標是讓「一切業務數據化,一切數據業務化」,將所有的數據匯聚到數據中台來,打通各個業務線的數據流轉、數據鏈路,了解企業數據現狀。
在為數據應用提供數據服務的時候,減少數據平台的重復開發,減少數據重復的存儲,從而減少企業成本。同時,建立統一的數據存儲、數據使用模型中心、能力中心,將相關業務領域的數據做匯聚,解決了數據互聯互通的訴求,實現數據價值上的一加一大於二。
在未來,數據中台將會是數字化經營的重要依託。通過數據的沉澱和技術手段,為用戶提供更優質的服務,數據中台就是基於這個理念而誕生的。通過數據中台,提升企業的效能,持續提高用戶的響應力,實現數據化的運營,更好地支持業務發展和創新。
如今,數據中台對很多企業來說,是一個非常有吸引力的數字化解決方案,但企業需要以業務需求來推動數字化進程,而不能一知半解就盲目進行,當企業在明確的業務需求驅動下,搭配完善的數字化解決方案,才能降低轉型失敗的幾率。