當前位置:首頁 » 存儲配置 » 海量數據存儲

海量數據存儲

發布時間: 2022-01-09 20:25:21

Ⅰ 海量空間數據存儲

(一)空間數據存儲技術

隨著地理信息系統的發展,空間資料庫技術也得到了很大的發展,並出現了很多新的空間資料庫技術(黃釗等,2003),其中應用最廣的就是用關系資料庫管理系統(RDBMS)來管理空間數據。

用關系資料庫管理系統來管理空間數據,主要解決存儲在關系資料庫中的空間數據與應用程序之間的數據介面問題,即空間資料庫引擎(SpatialDatabase Engine)(熊麗華等,2004)。更確切地說,空間資料庫技術是解決空間數據對象中幾何屬性在關系資料庫中的存取問題,其主要任務是:

(1)用關系資料庫存儲管理空間數據;

(2)從資料庫中讀取空間數據,並轉換為GIS應用程序能夠接收和使用的格式;

(3)將GIS應用程序中的空間數據導入資料庫,交給關系資料庫管理。

空間資料庫中數據存儲主要有三種模式:拓撲關系數據存儲模式、Oracle Spatial模式和ArcSDE模式。拓撲關系數據存儲模式將空間數據存在文件中,而將屬性數據存在資料庫系統中,二者以一個關鍵字相連。這樣分離存儲的方式由於存在數據的管理和維護困難、數據訪問速度慢、多用戶數據並發共享沖突等問題而不適用於大型空間資料庫的建設。而OracleSpatial實際上只是在原來的資料庫模型上進行了空間數據模型的擴展,實現的是「點、線、面」等簡單要素的存儲和檢索,所以它並不能存儲數據之間復雜的拓撲關系,也不能建立一個空間幾何網路。ArcSDE解決了這些問題,並利用空間索引機制來提高查詢速度,利用長事務和版本機制來實現多用戶同時操縱同一類型數據,利用特殊的表結構來實現空間數據和屬性數據的無縫集成等(熊麗華等,2004)。

ArcSDE是ESRI公司開發的一個中間件產品,所謂中間件是一個軟體,它允許應用元素通過網路連接進行互操作,屏蔽其下的通訊協議、系統結構、操作系統、資料庫和其他應用服務。中間件位於客戶機/伺服器的操作系統之上,管理計算資源和網路通訊,並營造出一個相對穩定的高層應用環境,使開發人員可以集中精力於系統的上層開發,而不用過多考慮系統分布式環境下的移植性和通訊能力。因此,中間件能無縫地連入應用開發環境中,應用程序可以很容易地定位和共享中間件提供的應用邏輯和數據,易於系統集成。在分布式的網路環境下,客戶端的應用程序如果要訪問網路上某個伺服器的信息,而伺服器可能運行在不同於客戶端的操作系統和資料庫系統中。此時,客戶機的應用程序中負責尋找數據的部分只需要訪問一個數據訪問中間件,由該中間件完成網路中數據或服務的查找,然後將查找的信息返回給客戶端(萬定生等,2003)。因此,本系統實現空間資料庫存儲的基本思想就是利用ArcSDE實現各類空間數據的存儲。

目前,空間數據存儲技術已比較成熟,出現了許多類似ArcSDE功能的中間件產品,這些軟體基本上都能實現空間數據的資料庫存儲與管理,但對於海量空間數據的存儲,各種軟體性能差別較大。隨著數據量的增長,計算機在分析處理上會產生很多問題,比如數據不可能一次完全被讀入計算機的內存中進行處理。單純依賴於硬體技術,並不能滿足持續增長的數據的處理要求。因此需要在軟體上找到處理海量數據的策略,並最終通過軟硬體的結合完成對海量數據的處理。在海量數據存儲問題上,許多專家從不同側面進行過研究,Lindstrom在地形簡化中使用了外存模型(Out-of-core)技術;鍾正採用了基於數據分塊、動態調用的策略;汪國平等人在研究使用高速網路進行三維海量地形數據的實時交互瀏覽中,採用了分塊、多解析度模板建立模型等方法。這些技術、方法已經在各自系統上進行了研究和實現。本系統採用的ArcSDE軟體基本上也是採用分塊模型的方法,具體存儲和操作不需要用戶過多了解,已經由ArcSDE軟體實現。因此,對海量數據的存儲管理,更需要從數據的組織方式等方面進行設計。塔里木河流域生態環境動態監測系統採集了大量的遙感影像、正射影像等柵格結構的數據,這些數據具有很大的數據量,為適應流域空間基礎設施的管理需要,採取一種新的方式來管理、分發這些海量數據以適應各部門的快速瀏覽和管理需要。

(二)影像金字塔結構

影像資料庫的組織是影像資料庫效率的關鍵,為了獲得高效率的存取速度,在數據的組織上使用了金字塔數據結構和網格分塊數據結構。該技術主導思想如下:

(1)將資料庫中使用到的紋理處理成為大小一致的紋理塊;

(2)為每塊紋理生成5個細節等級的紋理,分別為0、1、2、3、4,其中1級紋理通過0級紋理1/4壓縮得到,2級紋理通過1級紋理1/4壓縮得到,…,以此類推;

(3)在顯示每個塊數據之前,根據顯示比例的大小,並以此決定該使用那一級的紋理;

(4)在內存中建立紋理緩沖池,使用LRU演算法進行紋理塊的調度,確保使用頻率高的紋理調度次數盡可能少。

(三)影像數據壓縮

影像數據壓縮有無損壓縮和有損壓縮兩個方法,具體採取哪種壓縮方法需根據具體情況確定。對於像元值很重要的數據,如分類數據、分析數據等採用無損壓縮(即LZ77演算法),否則採用有損壓縮(即JPEG演算法)。通過對影像數據的壓縮,一方面可以節約存儲空間,另一方面可以加快影像的讀取和顯示速度。影像數據的壓縮一般與構建金字塔同時進行,在構建影像金字塔過程中自動完成數據的壓縮。

Ⅱ 海量數據存儲有哪些方式與方法

1、容量可線性擴展,單名字空間達EB級,2、海量小文件存儲,百億級文件高效訪問,3、中心靈活部署,容災匯聚分發更便捷,4、支持大數據和AI,統一數據存儲和分析,你可以問下瑞馳信息技術,做數據存儲很專 業,技術很牛的。希望我的回答能解決到你的問題

Ⅲ 海量數據存儲有哪些方式與方法

杉岩海量對象存儲MOS,針對海量非結構化數據存儲的最優化解決方案,採用去中心化、分布式技術架構,支持百億級文件及EB級容量存儲,

具備高效的數據檢索、智能化標簽和分析能力,輕松應對大數據和雲時代的存儲挑戰,為企業發展提供智能決策。

1、容量可線性擴展,單名字空間達EB級

SandStone MOS可在單一名字空間下實現海量數據存儲,支持業務無感知的存儲伺服器橫向擴容,為爆炸式增長的視頻、音頻、圖片、文檔等不同類型的非結構化數據提供完美的存儲方案,規避傳統NAS存儲的單一目錄或文件系統存儲空間無法彈性擴展難題

2、海量小文件存儲,百億級文件高效訪問

SandStone MOS基於完全分布式的數據和元數據存儲架構,為海量小文件存儲而生,將企業級NAS存儲的千萬文件量級提升至互聯網規模的百億級別,幫助企業從容應對幾何級增長的海量小文件挑戰。

3、中心靈活部署,容災匯聚分發更便捷

SandStone MOS支持多數據中心靈活部署,為企業數據容災、容災自動切換、多分支機構、數據就近訪問等場景提供可自定義的靈活解決方案,幫助企業實現跨地域多活容災、數據流轉、就近讀寫等,助力業務高速發展。

4、支持大數據和AI,統一數據存儲和分析

SandStone MOS內置文件智能化處理引擎,實現包括語音識別、圖片OCR識別、文件格式轉換等批量處理功能,結合標簽檢索能力還可實現語音、證件照片檢索,從而幫助企業更好地管理非結構化數據。同時,SandStone MOS還支持與Hadoop、Spark等大數據分析平台對接,一套存儲即可滿足企業數據存儲、管理和挖掘的需求。

Ⅳ 有冷數據存儲海量數據存儲解決方案嗎

目前市場上主流的海量數據存儲解決方案當然是雲存儲解決方案啦!我知道一家公司瑞馳信息技術很專業,你可以咨詢下看有沒有適合你的方案

Ⅳ 哪些技術屬於大數據的關鍵技術海量數據的存儲技術

非常多的,問答不能發link,不然我給你link了。有譬如Hadoop等開源大數據項目的,編程語言的,以下就大數據底層技術說下。

簡單以永洪科技的技術說下,有四方面,其實也代表了部分通用大數據底層技術:
Z-Suite具有高性能的大數據分析能力,她完全摒棄了向上升級(Scale-Up),全面支持橫向擴展(Scale-Out)。Z-Suite主要通過以下核心技術來支撐PB級的大數據:

跨粒度計算(In-DatabaseComputing)
Z-Suite支持各種常見的匯總,還支持幾乎全部的專業統計函數。得益於跨粒度計算技術,Z-Suite數據分析引擎將找尋出最優化的計算方案,繼而把所有開銷較大的、昂貴的計算都移動到數據存儲的地方直接計算,我們稱之為庫內計算(In-Database)。這一技術大大減少了數據移動,降低了通訊負擔,保證了高性能數據分析。

並行計算(MPP Computing)
Z-Suite是基於MPP架構的商業智能平台,她能夠把計算分布到多個計算節點,再在指定節點將計算結果匯總輸出。Z-Suite能夠充分利用各種計算和存儲資源,不管是伺服器還是普通的PC,她對網路條件也沒有嚴苛的要求。作為橫向擴展的大數據平台,Z-Suite能夠充分發揮各個節點的計算能力,輕松實現針對TB/PB級數據分析的秒級響應。

列存儲 (Column-Based)
Z-Suite是列存儲的。基於列存儲的數據集市,不讀取無關數據,能降低讀寫開銷,同時提高I/O 的效率,從而大大提高查詢性能。另外,列存儲能夠更好地壓縮數據,一般壓縮比在5 -10倍之間,這樣一來,數據佔有空間降低到傳統存儲的1/5到1/10 。良好的數據壓縮技術,節省了存儲設備和內存的開銷,卻大大了提升計算性能。

內存計算
得益於列存儲技術和並行計算技術,Z-Suite能夠大大壓縮數據,並同時利用多個節點的計算能力和內存容量。一般地,內存訪問速度比磁碟訪問速度要快幾百倍甚至上千倍。通過內存計算,CPU直接從內存而非磁碟上讀取數據並對數據進行計算。內存計算是對傳統數據處理方式的一種加速,是實現大數據分析的關鍵應用技術。

Ⅵ 數據存儲,海量數據存儲解決方案

目前市場上主流的海量數據存儲解決方案當然是雲存儲解決方案啦! 南京雲創存儲科技有限公司的cStor雲存儲系統可以幫你解決海量存儲的問題! 你可以到雲創存儲的官網上了解一下產品的詳細信息! 希望我的回答會對你有所幫助咯!

Ⅶ 海量數據存儲

存儲技術經歷了單個磁碟、磁帶、RAID到網路存儲系統的發展歷程。網路存儲技術就是將網路技術和I/O技術集成起來,利用網路的定址能力、即插即用的連接性、靈活性,存儲的高性能和高效率,提供基於網路的數據存儲和共享服務。在超大數據量的存儲管理、擴展性方面具有明顯的優勢。

典型的網路存儲技術有網路附加存儲NAS(Network Attached Storage)和存儲區域網SAN(Storage Area Networks)兩種。

1)NAS技術是網路技術在存儲領域的延伸和發展。它直接將存儲設備掛在網上,有良好的共享性、開放性。缺點是與LAN共同用物理網路,易形成擁塞,而影響性能。特別是在數據備份時,性能較低,影響在企業存儲應用中的地位。

2)SAN技術是以數據存儲為中心,使用光纖通道連接高速網路存儲的體系結構。即將數據存儲作為網路上的一個區域獨立出來。在高度的設備和數據共享基礎上,減輕網路和伺服器的負擔。因光纖通道的存儲網和LAN分開,使性能得到很大的提高,而且還提供了很高的可靠性和強大的連續業務處理能力。在SAN中系統的擴展、數據遷移、數據本地備份、遠程數據容災數據備份和數據管理等都比較方便,整個SAN成為一個統一管理的存儲池(Storage Pool)。SAN存儲設備之間通過專用通道進行通信,不佔用伺服器的資源。因此非常適合超大量數據的存儲,成為網路存儲的主流。

3)存儲虛擬化技術是將系統中各種異構的存儲設備映射為一個單一的存儲資源,對用戶完全透明,達到互操作性的目的和利用已有的硬體資源,把SAN內部的各種異構的存儲資源統一成一個單一視圖的存儲池,可根據用戶的需要方便地切割、分配。從而保持已有的投資,減少總體成本,提高存儲效率。

存儲虛擬化包括3個層次結構:基於伺服器的虛擬化存儲、基於存儲設備的虛擬化存儲和基於網路的虛擬化存儲。

1)基於伺服器的虛擬化存儲由邏輯管理軟體在主機/伺服器上完成。經過虛擬化的存儲空間可跨越多個異構的磁碟陣列,具有高度的穩定性和開放性,實現容易、簡便。但對異構環境和分散管理不太適應。

2)基於存儲設備的虛擬化存儲,因一些高端磁碟陣列本身具有智能化管理,可以實現同一陣列,供不同主機分享。其結構性能可達到最優。但實現起來價格昂貴,可操作性差。

3)基於網路的虛擬化存儲,通過使用專用的存儲管理伺服器和相應的虛擬化軟體,實現多個主機/伺服器對多個異構存儲設備之間進行訪問,達到不同主機和存儲之間真正的互連和共享,成為虛擬存儲的主要形式。根據不同結構可分為基於專用伺服器和基於存儲路由器兩種方式。①基於專用伺服器的虛擬化,是用一台伺服器專用於提供系統的虛擬化功能。根據網路拓撲結構和專用伺服器的具體功能,其虛擬化結構有對稱和非對稱兩種方式。在對稱結構中數據的傳輸與元數據訪問使用同一通路。實現簡單,對伺服器和存儲設備的影響小,對異構環境的適應性強。缺點是專用伺服器可能成為系統性能的瓶頸,影響SAN的擴展。在非對稱結構中,數據的傳輸與元數據訪問使用不同通路。應用伺服器的I/O命令先通過命令通路傳送到專用伺服器,獲取元數據和傳輸數據視圖後,再通過數據通路得到所需的數據。與對稱結構相比,提高了存儲系統的性能,增加了擴展能力。②基於存儲路由器的SAN虛擬化,存儲路由器是一種智能化設備,既具有路由器的功能,又針對I/O進行專門優化。它部署在存儲路由器上,多個存儲路由器保存著整個存儲系統中的元數據多個副本,並通過一定的更新策略保持一致性。這種結構中,因存儲路由器具有強大的協議功能,所以具有更多的優勢。能充分利用存儲資源,保護投資。能實現軟硬體隔離,並輔有大量的自動化工具,提高了虛擬伺服器的安全性,降低對技術人員的需求和成本。

Ⅷ 海量數據存儲一般用在什麼地方

分布式存儲是一種數據存儲技術,它通過網路使用企業中每台機器上的磁碟空間,這些分散的存儲資源構成了虛擬存儲設備,數據分布存儲在企業的各個角落。你可以咨詢下瑞馳,專業做數據存儲的。

Ⅸ 海量存儲和統一存儲的區別

海量存儲是針對目前數據爆炸性增長提出的概念。
統一存儲即融合存儲,將SAN/NAS都融入到存儲設備中。

Ⅹ  海量數據存儲與管理

正如上述,在國土資源遙感綜合調查信息中,既包含有多源、多時相、多尺度、多解析度、多類型的遙感圖像數據和基礎地理數據,也包括在項目開展過程中衍生的許多觀測和分析資料,數據量十分龐大。因此,根據數據共享的要求,在數據生產、管理、應用服務以及更新和維護過程中,如何組織和管理好這些海量數據,如何快速、全面有效地訪問和獲得所需數據,成為面臨的突出問題。在這里,採用何種方式利用現有的大型商業化關系資料庫系統高效地存儲與管理這些數據,成為能否發揮系統最大性能的關鍵所在。

傳統的GIS系統對空間數據(與空間位置、空間關系有關的數據)的存儲與管理大多採用這些商業軟體特定的文件方式,如:ArcInfo的Coverage、MapInfo的Tab、MAPGIS的WL等。如果數據量越多,這些文件就會越大,數據的處理就會越復雜,其存儲、檢索、管理也就越困難,而且其最大的缺點還在於不能進行多用戶並發操作。由此可見,用以往傳統的存儲機制去管理像遙感綜合調查這樣的海量數據,顯然難以滿足要求。而近年來發展起來的空間資料庫引擎技術則是解決海量數據存儲管理的途徑之一。

本系統建設過程中,採用了空間資料庫引擎ArcSDE+大型關系資料庫Oracle組合技術,較理想地實現了遙感綜合調查海量數據的存儲、檢索、查詢、處理。眾所周知,Oracle提供了大型資料庫環境,能夠很好地處理海量數據,而ArcSDE可將具有地理特徵的空間數據和非空間數據統一載入到Oracle中去,因此,通過ArcSDE空間資料庫引擎,可將Oracle海量數據管理功能載入到GIS系統中,並可利用Oracle的強大管理機制進行高效率的事務處理、記錄鎖定、並發控制等服務操作。

熱點內容
群輝存儲伺服器 發布:2025-01-11 00:50:19 瀏覽:428
如何用js腳本 發布:2025-01-11 00:47:32 瀏覽:887
日誌和資料庫 發布:2025-01-11 00:47:24 瀏覽:126
windows配置ftp 發布:2025-01-11 00:35:02 瀏覽:656
des演算法代碼c 發布:2025-01-11 00:33:42 瀏覽:806
共享文件夾設置密碼無法訪問 發布:2025-01-11 00:32:49 瀏覽:478
槽鋼演算法 發布:2025-01-11 00:26:21 瀏覽:883
linux命令包 發布:2025-01-10 23:54:26 瀏覽:32
python輪廓 發布:2025-01-10 23:49:23 瀏覽:179
思科配置線怎麼選 發布:2025-01-10 23:48:44 瀏覽:705