示波器分段存儲
㈠ 示波器 如何自動存儲數據
示波器的分段存儲功能可以解決你的問題:
分段存儲其實就是讓示波器只記錄我們想要的片段,從而可以更高效地利用示波器的存儲深度且保證波形細節。在足夠的采樣率下捕獲多個波形事件,以便進行有效的分析。分段存儲還可以幫助測試者捕獲偶發信號和更優化地保存和顯示所需的數據。
我們來看看如何設置分段存儲以記錄上圖中I2C匯流排信號的有用片段,以及如何用分段存儲來捕獲偶發信號和更優化地保存所需的數據。
首先,我們調整示波器的時基,設置好觸發方式,使得有用信息部分佔滿整個示波器屏幕,如下圖所示,可見此時的采樣率為1GSa/s
㈡ 在示波器實驗中,使波形穩定的原理和操作步驟。
不能。
李莎育圖形是把示波器當成YX顯示器,大垂直與水平方向同時輸入兩個頻率相關聯的信號,從圖形觀測相位;
普通觀測信號波形時使用的是Yt模式,通過同步電平的調節可以把輸入示波器的信號大水平方向穩定下來,不讓其左右跑動。
㈢ 示波器分段存儲功能有什麼作用
要了解示波器的分段存儲功能,我們先來看看這個功能解決了什麼問題,存在的價值是什麼。
首先我們要明確一點,數字示波器通過ADC模數轉換器將模擬信號轉換成了數字信號,只能努力去還原信號本來的樣子,要想達到100%還原是不可能的,那麼這個還原就肯定會存在誤差,誤差小的時候我們能接受,有時候誤差大了可能信號基本的樣子都變了,那自然不是我們想要的結果。
示波器作為一個系統,影響其測量精度的因素有很多種,其中比較重要的因素就是示波器的帶寬和采樣率,而示波器的采樣率 = 存儲深度 ÷ 波形記錄時長,采樣率的上限和存儲深度是固定的,我們記錄波形的時長如果超過一定程度,由於存儲深度的限制,采樣率就必然相應的也要降低。采樣率下降就有可能導致信號失真。
比如下圖是一個I2C匯流排信號,圖左邊時基是20us,圖右邊時基是20s。可以看到圖左邊是正常的脈沖信號,此時的采樣率是1G Sa/s。圖右邊由於波形記錄時長增加,采樣率下降到了500K Sa/s。
㈣ 示波器如何保存波形數據,保存下來的怎麼看
有一篇文章專門講解這個的:了解示波器的多種文件存儲方式WAV:數據文件保存的第一種方式,將屏幕上顯示的波形數據進行抽樣後保存為二進制文件,以WAV格式保存到本地或者外部存儲器中,可在本機調用打開查看、縮放等。CSV:數據文件保存的第二種方式,它會保存示波器當前通道的波形數據,以CSV格式存到示波器內部存儲或外部存儲器U盤中,是一種逗號分隔值文件格式,其文件以純文本形式存儲表格數據,它會將需要的二進制數據轉換成ASCII碼,以ASCII碼數據進行保存,可用Excel、Access或者文本文件打開,本機不可調用。下圖是用Excel打開一CSV文件後的界面,下部分是以E、F兩項為坐標合成的折線圖:由於保存時間的原因,以WAV和CSV保存的數據文件也是經過取樣的(下圖中有87500個數據點坐標),在保證可以看到信號大部分信息的同時,又將數據保存的時間控制在2秒以內.那麼對於個別需要將一屏28M的波形數據完整保存下來的用戶,面對這幾千萬的龐大數據量,難道真的要等示波器存儲幾個小時嗎?不用著急,TO1000系列平板示波器為這種需求提供第三種保存方式:BIN具體操作流程如下圖所示,前後的操作不到60S的時間,即可獲得這幾千萬的龐大數據量。Data2csv.exe小工具下載地址:
㈤ 示波器的真正功能是什麼
您好!很高興能為您回答。
示波器是一種用途十分廣泛的電子測量儀器 。它能把肉眼看不見的電信號變換成看得見的圖象,便於人們研究各種電現象的變化過程。
示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光 物質的屏面上,就可產生細小的光點。在被測信號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測信號的瞬時值的變化曲線 。利用示波器 能觀察各種不同信號幅度隨時間變化的波形 曲線 ,還可以用它測試各種不同的電量,如電壓 、電流、頻率 、相位差 、調幅度等等。
希望我的回答對您有所幫助!
㈥ 怎樣使示波器顯示的波形快速穩定下來
示波器波形不穩定一般來說是兩種原因,其一是因為信號沒有同步,也就是示波器觸發設置的問題;還有一種是信號本身沒有規律,呈現非周期變化,無法找到合適的觸發方式,這樣信號也就無法穩定顯示。
我們總結一下就是,示波器要想信號看起來穩定,必須使其捕獲的波形呈現周期性,也就是每次捕獲到的信號樣子要基本一致。然後我們可以利用示波器的各種功能和觸發來達到這個目的。比如本文就是採用了分段存儲和脈寬觸發解決了這個問題。
㈦ 示波器的存儲深度大簡單來說有什麼好處
存儲深度的理論可能說了以後還有點迷惑,直接給個實例:
有位深圳福田華強北的工程師是專門研發生產屏幕的,需要用示波器測量出蘋果平板電腦 ipad 給屏幕上電時的一串脈沖信號,示波器捕捉下來後,他就可以對照著模擬出這段信號。但是這位朋友測了好幾次都不成功,或者對捕捉到的信號不滿意
㈧ 存儲深度對示波器的影響到底有多大
得益於電子技術的發展,在國外三巨頭壟斷的示波器領域,國產示波器也如雨後春筍般涌現出來,優秀國產示波器的代表:鼎陽(Siglent)科技和北京普源精電,如今得到了長足的發展,但由於信號傳輸的鏈路瓶頸以及IC封鎖,夾縫中生長的國產示波器註定暫時只能走低端路線,這導致了國產示波器同質化比較嚴重、各廠家生產的示波器性能跟質量參差不齊。放眼望去,外觀乃至界面各廠商都一致地採用所謂的「主流」操作方式,而作為衡量示波器的技術指標,工程師更多地考慮那些出現在產品手冊和雜志廣告的標題中列出的技術指標,在這些主要的技術指標中,眾所周知的是帶寬、采樣率和存儲深度。誠然帶寬指標理所當然非常重要。帶寬決定示波器對信號的基本測量能力。隨著信號頻率的增加,示波器對信號的准確顯示能力將下降。如果沒有足夠的帶寬,示波器將無法分辨高頻變化。幅度將出現失真,邊緣將會消失,細節數據將被丟失。如果沒有足夠的帶寬,得到的關於信號的所有特性,響鈴和振鳴等都毫無意義。本規格指出示波器所能准確測量的頻率范圍。每位工程師都足夠重視帶寬對測量的影響,所以大家都遵循測量的五倍法則:示波器所需帶寬=被測信號的最高信號頻率*5,使用五倍准則選定的示波器的測量誤差將不會超過+/-2%,對大多的操作來說已經足夠。關於采樣率,指數字示波器對信號采樣的頻率,類似於電影攝影機中的幀的概念。示波器的采樣速率越快,所顯示的波形的解析度和清晰度就越高,重要信息和事件丟失的概率就越小,信號重建時也就越真實。采樣率又分為實時采樣率跟等效采樣率,我們平常所說的采樣率是指實時采樣率,這是因為實時采樣率可以用來實時地捕獲非周期異常信號,而等效采樣率則只能用於採集周期性的穩定信號。 存儲深度雖然也作為重要指標之一,但在衡量示波器時候卻往往忽略它的重要性,一直以來都把它作為一個「次要」指標看待,並不是很清楚大的存儲深度對於測量有什麼影響,再加上有些示波器廠家對「存儲深度」的誤導,同時存儲深度跟采樣率的隱藏關聯關系,導致存儲深度處於一個形同虛設的指標,為了糾正這些誤解,下面跟大家一起探討什麼是存儲深度?大的存儲深度對測量有什麼影響? 何謂存儲深度存儲深度是示波器所能存儲的采樣點多少的量度。如果您需要不間斷的捕捉一個脈沖串,則要求示波器有足夠的存儲器以便捕捉整個事件。將所要捕捉的時間長度除以精確重現信號所須的取樣速度,可以計算出所要求的存儲深度,也稱記錄長度。並不是有些國內二流廠商對外宣稱的「存儲深度是指波形錄制時所能錄制的波形最長記錄「,這樣的偷換概念,完全向相反方向引導人們的理解,難怪乎其技術指標高達」1042K「的記錄長度。這就是為什麼他們不說存儲深度是在高速采樣下,一次實時採集波形所能存儲的波形點數。把經過A/D數字化後的八位二進制波形信息存儲到示波器的高速CMOS內存中,就是示波器的存儲,這個過程是「寫過程」。內存的容量(存儲深度)是很重要的。對於DSO,其最大存儲深度是一定的,但是在實際測試中所使用的存儲長度卻是可變的。在存儲深度一定的情況下,存儲速度越快,存儲時間就越短,他們之間是一個反比關系。同時采樣率跟時基(timebase)是一個聯動的關系,也就是調節時基檔位越小采樣率越高。存儲速度等效於采樣率,存儲時間等效於采樣時間,采樣時間由示波器的顯示窗口所代表的時間決定,所以:存儲深度=采樣率× 采樣時間(距離 = 速度×時間)由於DSO的水平刻度分為12格,每格的所代表的時間長度即為時基(timebase),單位是s/div,所以采樣時間= timebase × 12. 由存儲關系式知道:提高示波器的存儲深度可以間接提高示波器的采樣率,當要測量較長時間的波形時,由於存儲深度是固定的,所以只能降低采樣率來達到,但這樣勢必造成波形質量的下降;如果增大存儲深度,則可以以更高的采樣率來測量,以獲取不失真的波形。下圖曲線揭示了采樣率、存儲深度、采樣時間三者的關系及存儲深度對示波器實際采樣率的影響。比如,當時基選擇10us/div檔位時,整個示波器窗口的采樣時間是10us/div * 12格=120us,在1Mpts的存儲深度下,當前的實際采樣率為:1M÷120us︽8.3GS/s,如果存儲深度只有250K,那當前的實際采樣率就只要2.0GS/s了! 存儲深度決定了實際采樣率的大小一句話,存儲深度決定了DSO同時分析高頻和低頻現象的能力,包括低速信號的高頻雜訊和高速信號的低頻調制。明白了存儲深度與取樣速度密切關系後,我們來淺談下長存儲對於我們平常的測量帶來什麼的影響呢?平常分析一個十分穩定的正弦信號,只需要500點的記錄長度;但如果要解析一個復雜的數字數據流,則需要有上萬個點或更多點的存儲深度,這是普通存儲是做不到的,這時候就需要我們選擇長存儲模式。可喜的是現在國產示波已經具有這樣的選擇,比如鼎陽(Siglent)公司推出的ADS1000CA系列示波器高達2M的存儲深度,是目前國產示波器最大的存儲深度示波器,打破了只有高端示波器才可能具有大的存儲深度的功能。通過選擇長存儲模式,以便對一些操作中的細節進行優化,同時配備1G實時采樣率以及高刷新率,完美再現捕獲波形。長存儲對平常的測量中,影響最明顯的是在表頭含有快速變化的數據鏈和功率測量中。這是由於功率電子的頻率相對較低(大部分小於1MHz),這對於我們選擇示波器帶寬來說300MHz的示波器帶寬相對於幾百KHz的電源開關頻率來說已經足夠,但很多時候我們卻忽略了對采樣率和存儲深度的選擇.比如說在常見的開關電源的測試中,電壓開關的頻率一般在200KHz或者更快,由於開關信號中經常存在著工頻調制,工程師需要捕獲工頻信號的四分之一周期或者半周期,甚至是多個周期。開關信號的上升時間約為100ns,我們建議為保證精確的重建波形需要在信號的上升沿上有5個以上的采樣點,即采樣率至少為5/100ns=50MS/s,也就是兩個采樣點之間的時間間隔要小於100/5=20ns,對於至少捕獲一個工頻周期的要求,意味著我們需要捕獲一段20ms長的波形,這樣我們可以計算出來示波器每通道所需的存儲深度=20ms/20ns=1Mpts !這就是為什麼我們需要大的存儲深度的原因了!如果此時存儲深度達不到1 Mpts,只有普通示波器的幾K呢?那麼要麼我們無法觀測如此長周期信號,要麼就是觀測如此長周期信號時只能以低采樣率進行采樣,結果波形重建的時候根本無法詳細顯示開關頻率的波形情況。長存儲模式下,既保證了采樣在高速率下對信號進行采樣,又能保證記錄長時間的信號。如果此時只進行單次捕捉或停止採集,那麼在不同時基下擴展波形時由於數據點充分,可以很好觀測疊加在信號上面的小毛刺等異常信號,這對於工程師發現問題、調測設備帶來極大的便利。而如果是普通存儲,為了保持高的采樣率,則在長的記錄時間內,由於示波器的連續采樣,則內存中已經記錄了幾幀數據,內存中的數據並不是一次採集獲得的數據,此時如果停止採集,並對波形旋轉時基進行放大顯示,則只能達到有限的幾個檔位,無法實現全掃描范圍的觀察。在DSO中,通過快速傅立葉變換(FFT)可以得到信號的頻譜,進而在頻域對一個信號進行分析。如電源諧波的測量需要用FFT來觀察頻譜,在高速串列數據的測量中也經常用FFT來分析導致系統失效的雜訊和干擾。對於FFT運算來說,示波器可用的採集內存的總量將決定可以觀察信號成分的最大范圍(奈奎斯特頻率),同時存儲深度也決定了頻率解析度△f。如果奈奎斯特頻率為500 MHz,解析度為10 kHz,考慮一下確定觀察窗的長度和採集緩沖區的大小。若要獲得10kHz 的解析度,則採集時間至少為: T = 1/△f = 1/10 kHz = 100 ms,對於具有100kB 存儲器的數字示波器,可以分析的最高頻率為:△ f × N/2 = 10 kHz × 100kB/2 = 500MHz。對於DSO來說,長存儲能產生更好的FFT結果,既增加了頻率解析度又提高了信號對雜訊的比率。 一句話,長存儲起到一個總覽全局又細節呈現的的效果,存儲深度決定了DSO同時分析高頻和低頻現象的能力,包括低速信號的高頻雜訊和高速信號的低頻調制。
㈨ 示波器顯示穩定波形的條件是什麼
觸發是數字示波器區別於模擬示波器的最大特徵之一。觸發就是使示波器的掃描與被觀測信號同步,從而顯示穩定的波形。為滿足不同的觀測需要,需要不同的「觸發模式」,主要有三種觸發模式:
1、自動觸發:不論是否滿足觸發條件都有波形顯示,且觸發的位置隨機,此時,便呈現出波形「抖動」的情況,該模式適用於低重復率和未知信號電平;
2、普通觸發:只在滿足觸發條件時顯示波形,不滿足觸發條件時保持原有波形顯示,並等待下一次觸發,該模式適用於低重復率信號及不要求自動觸發的信號;
3、單次觸發:在單次觸發模式下,示波器一直處於等待狀態,直至出現符合觸發條件波形時,進行一次觸發,隨後即停止波形采樣。
(9)示波器分段存儲擴展閱讀
設置觸發條件
1、未知信號:當對被測信號不是特別了解時,應選用自動觸發,此時在屏幕上至少能看到一點東西,哪怕僅僅能看到掃描線,也可通過調節垂直增益、垂直位置、時基速率等參數「找到」波形,然後通過選擇觸發源、觸發邊沿、觸發電平等穩定波形。
2、已知信號:當被測信號為已知類型信號時,可以在觸發設置中選取相應的觸發條件,此時屏幕上便可顯示出被測信號,如果被測信號存在「抖動」的情況,通過調整自動、普通觸發類型及觸發電平的位置即可使波形穩定的顯示在屏幕上。