當前位置:首頁 » 存儲配置 » 存儲器負載管電壓

存儲器負載管電壓

發布時間: 2022-04-14 20:15:36

A. 請問主存儲器(內存)與輔助存儲器(外存)的區別是什麼微機上常用的輔助存儲器有哪幾種

1、易失性和非易失性:

內存,例如隨機存取內存(RAM),是具有易失性的。這意味著當系統斷電時,數據就會丟失。與之相反,外部存儲是非易失性的,因此即使斷掉電源,它依然能夠能保存數據。

2、性能和容量:

在大多數情況下,內存的速度比外存快的多。而與外存不同的是,RAM直接通過更寬更快的匯流排連接到CPU。

3、訪問許可權區別:

CPU只能直接訪問內存,外存的東西要先到內存CPU才能處理。

微機上常用的輔助存儲器有軟盤、硬碟、光碟等外部存儲器。

(1)存儲器負載管電壓擴展閱讀

計算機誕生初期並不存在內存條的概念。最早的內存是以磁芯的形式排列在線路上,每個磁芯與晶體管組成的一個雙穩態電路作為一比特(BIT)的存儲器。

每一比特都要有玉米粒大小,可以想像一間機房只能裝下不超過百k位元組左右的容量。後來才出現了焊接在主板上的集成內存晶元,以內存晶元的形式為計算機的運算提供直接支持。

那時的內存晶元容量都特別小,最常見的莫過於256K×1bit、1M×4bit。雖然如此,但對於那時的運算任務來說卻綽綽有餘了。

B. 存儲器的原理是什麼

存儲器講述工作原理及作用

介紹

存儲器(Memory)是現代信息技術中用於保存信息的記憶設備。其概念很廣,有很多層次,在數字系統中,只要能保存二進制數據的都可以是存儲器;在集成電路中,一個沒有實物形式的具有存儲功能的電路也叫存儲器,如RAM、FIFO等;在系統中,具有實物形式的存儲設備也叫存儲器,如內存條、TF卡等。計算機中全部信息,包括輸入的原始數據、計算機程序、中間運行結果和最終運行結果都保存在存儲器中。它根據控制器指定的位置存入和取出信息。有了存儲器,計算機才有記憶功能,才能保證正常工作。計算機中的存儲器按用途存儲器可分為主存儲器(內存)和輔助存儲器(外存),也有分為外部存儲器和內部存儲器的分類方法。外存通常是磁性介質或光碟等,能長期保存信息。內存指主板上的存儲部件,用來存放當前正在執行的數據和程序,但僅用於暫時存放程序和數據,關閉電源或斷電,數據會丟失。

2.按存取方式分類

(1)隨機存儲器(RAM):如果存儲器中任何存儲單元的內容都能被隨機存取,且存取時間與存儲單元的物理位置無關,則這種存儲器稱為隨機存儲器(RAM)。RAM主要用來存放各種輸入/輸出的程序、數據、中間運算結果以及存放與外界交換的信息和做堆棧用。隨機存儲器主要充當高速緩沖存儲器和主存儲器。

(2)串列訪問存儲器(SAS):如果存儲器只能按某種順序來存取,也就是說,存取時間與存儲單元的物理位置有關,則這種存儲器稱為串列訪問存儲器。串列存儲器又可分為順序存取存儲器(SAM)和直接存取存儲器(DAM)。順序存取存儲器是完全的串列訪問存儲器,如磁帶,信息以順序的方式從存儲介質的始端開始寫入(或讀出);直接存取存儲器是部分串列訪問存儲器,如磁碟存儲器,它介於順序存取和隨機存取之間。

(3)只讀存儲器(ROM):只讀存儲器是一種對其內容只能讀不能寫入的存儲器,即預先一次寫入的存儲器。通常用來存放固定不變的信息。如經常用作微程序控制存儲器。目前已有可重寫的只讀存儲器。常見的有掩模ROM(MROM),可擦除可編程ROM(EPROM),電可擦除可編程ROM(EEPROM).ROM的電路比RAM的簡單、集成度高,成本低,且是一種非易失性存儲器,計算機常把一些管理、監控程序、成熟的用戶程序放在ROM中。

3.按信息的可保存性分類

非永久記憶的存儲器:斷電後信息就消失的存儲器,如半導體讀/寫存儲器RAM。

永久性記憶的存儲器:斷電後仍能保存信息的存儲器,如磁性材料做成的存儲器以及半導體ROM。

4.按在計算機系統中的作用分

根據存儲器在計算機系統中所起的作用,可分為主存儲器、輔助存儲器、高速緩沖存儲器、控制存儲器等。為了解決對存儲器要求容量大,速度快,成本低三者之間的矛盾,目前通常採用多級存儲器體系結構,即使用高速緩沖存儲器、主存儲器和外存儲器。

能力影響

從寫命令轉換到讀命令,在某個時間訪問某個地址,以及刷新數據等操作都要求數據匯流排在一定時間內保持休止狀態,這樣就不能充分利用存儲器通道。此外,寬並行匯流排和DRAM內核預取都經常導致不必要的大數據量存取。在指定的時間段內,存儲器控制器能存取的有用數據稱為有效數據速率,這很大程度上取決於系統的特定應用。有效數據速率隨著時間而變化,常低於峰值數據速率。在某些系統中,有效數據速率可下降到峰值速率的10%以下。

通常,這些系統受益於那些能產生更高有效數據速率的存儲器技術的變化。在CPU方面存在類似的現象,最近幾年諸如AMD和 TRANSMETA等公司已經指出,在測量基於CPU的系統的性能時,時鍾頻率不是唯一的要素。存儲器技術已經很成熟,峰值速率和有效數據速率或許並不比以前匹配的更好。盡管峰值速率依然是存儲器技術最重要的參數之一,但其他結構參數也可以極大地影響存儲器系統的性能。

影響有效數據速率的參數

有幾類影響有效數據速率的參數,其一是導致數據匯流排進入若干周期的停止狀態。在這類參數中,匯流排轉換、行周期時間、CAS延時以及RAS到CAS的延時(tRCD)引發系統結構中的大部分延遲問題。

匯流排轉換本身會在數據通道上產生非常長的停止時間。以GDDR3系統為例,該系統對存儲器的開放頁不斷寫入數據。在這期間,存儲器系統的有效數據速率與其峰值速率相當。不過,假設100個時鍾周期中,存儲器控制器從讀轉換到寫。由於這個轉換需要6個時鍾周期,有效的數據速率下降到峰值速率的 94%。在這100個時鍾周期中,如果存儲器控制器將匯流排從寫轉換到讀的話,將會丟失更多的時鍾周期。這種存儲器技術在從寫轉換到讀時需要15個空閑周期,這會將有效數據速率進一步降低到峰值速率的79%。表1顯示出針幾種高性能存儲器技術類似的計算結果。

顯然,所有的存儲器技術並不相同。需要很多匯流排轉換的系統設計師可以選用諸如XDR、RDRAM或者DDR2這些更高效的技術來提升性能。另一方面,如果系統能將處理事務分組成非常長的讀寫序列,那麼匯流排轉換對有效帶寬的影響最小。不過,其他的增加延遲現象,例如庫(bank)沖突會降低有效帶寬,對性能產生負面影響。

DRAM技術要求庫的頁或行在存取之前開放。一旦開放,在一個最小周期時間,即行周期時間(tRC)結束之前,同一個庫中的不同頁不能開放。對存儲器開放庫的不同頁存取被稱為分頁遺漏,這會導致與任何tRC間隔未滿足部分相關的延遲。對於還沒有開放足夠周期以滿足tRC間隙的庫而言,分頁遺漏被稱為庫沖突。而tRC決定了庫沖突延遲時間的長短,在給定的DRAM上可用的庫數量直接影響庫沖突產生的頻率。

大多數存儲器技術有4個或者8個庫,在數十個時鍾周期具有tRC值。在隨機負載情況下,那些具有8個庫的內核比具有4個庫的內核所發生的庫沖突更少。盡管tRC與庫數量之間的相互影響很復雜,但是其累計影響可用多種方法量化。

存儲器讀事務處理

考慮三種簡單的存儲器讀事務處理情況。第一種情況,存儲器控制器發出每個事務處理,該事務處理與前一個事務處理產生一個庫沖突。控制器必須在打開一個頁和打開後續頁之間等待一個tRC時間,這樣增加了與頁循環相關的最大延遲時間。在這種情況下的有效數據速率很大程度上決定於I/O,並主要受限於DRAM內核電路。最大的庫沖突頻率將有效帶寬削減到當前最高端存儲器技術峰值的20%到30%。

在第二種情況下,每個事務處理都以隨機產生的地址為目標。此時,產生庫沖突的機會取決於很多因素,包括tRC和存儲器內核中庫數量之間的相互作用。tRC值越小,開放頁循環地越快,導致庫沖突的損失越小。此外,存儲器技術具有的庫越多,隨機地址存取庫沖突的機率就越小。

第三種情況,每個事務處理就是一次頁命中,在開放頁中定址不同的列地址。控制器不必訪問關閉頁,允許完全利用匯流排,這樣就得到一種理想的情況,即有效數據速率等於峰值速率。

第一種和第三種情況都涉及到簡單的計算,隨機情況受其他的特性影響,這些特性沒有包括在DRAM或者存儲器介面中。存儲器控制器仲裁和排隊會極大地改善庫沖突頻率,因為更有可能出現不產生沖突的事務處理,而不是那些導致庫沖突的事務處理。

然而,增加存儲器隊列深度未必增加不同存儲器技術之間的相對有效數據速率。例如,即使增加存儲器控制隊列深度,XDR的有效數據速率也比 GDDR3高20%。存在這種增量主要是因為XDR具有更高的庫數量以及更低的tRC值。一般而言,更短的tRC間隔、更多的庫數量以及更大的控制器隊列能產生更高的有效帶寬。

實際上,很多效率限制現象是與行存取粒度相關的問題。tRC約束本質上要求存儲器控制器從新開放的行中存取一定量的數據,以確保數據管線保持充滿。事實上,為保持數據匯流排無中斷地運行,在開放一個行之後,只須讀取很少量的數據,即使不需要額外的數據。

另外一種減少存儲器系統有效帶寬的主要特性被歸類到列存取粒度范疇,它規定了每次讀寫操作必須傳輸的數據量。與之相反,行存取粒度規定每個行激活(一般指每個RAS的CAS操作)需要多少單獨的讀寫操作。列存取粒度對有效數據速率具有不易於量化的巨大影響。因為它規定一個讀或寫操作中需要傳輸的最小數據量,列存取粒度給那些一次只需要很少數據量的系統帶來了問題。例如,一個需要來自兩列各8位元組的16位元組存取粒度系統,必須讀取總共32位元組以存取兩個位置。因為只需要32個位元組中的16個位元組,系統的有效數據速率降低到峰值速率的50%。匯流排帶寬和脈沖時間長度這兩個結構參數規定了存儲器系統的存取粒度。

匯流排帶寬是指連接存儲器控制器和存儲器件之間的數據線數量。它設定最小的存取粒度,因為對於一個指定的存儲器事務處理,每條數據線必須至少傳遞一個數據位。而脈沖時間長度則規定對於指定的事務處理,每條數據線必須傳遞的位數量。每個事務處理中的每條數據線只傳一個數據位的存儲技術,其脈沖時間長度為1。總的列存取粒度很簡單:列存取粒度=匯流排寬度×脈沖時間長度。

很多系統架構僅僅通過增加DRAM器件和存儲匯流排帶寬就能增加存儲系統的可用帶寬。畢竟,如果4個400MHz數據速率的連接可實現 1.6GHz的總峰值帶寬,那麼8個連接將得到3.2GHz。增加一個DRAM器件,電路板上的連線以及ASIC的管腳就會增多,總峰值帶寬相應地倍增。

首要的是,架構師希望完全利用峰值帶寬,這已經達到他們通過物理設計存儲器匯流排所能達到的最大值。具有256位甚或512位存儲匯流排的圖形控制器已並不鮮見,這種控制器需要1,000個,甚至更多的管腳。封裝設計師、ASIC底層規劃工程師以及電路板設計工程師不能找到採用便宜的、商業上可行的方法來對這么多信號進行布線的矽片區域。僅僅增加匯流排寬度來獲得更高的峰值數據速率,會導致因為列存取粒度限制而降低有效帶寬。

假設某個特定存儲技術的脈沖時間長度等於1,對於一個存儲器處理,512位寬系統的存取粒度為512位(或者64位元組)。如果控制器只需要一小段數據,那麼剩下的數據就被浪費掉,這就降低了系統的有效數據速率。例如,只需要存儲系統32位元組數據的控制器將浪費剩餘的32位元組,進而導致有效的數據速率等於50%的峰值速率。這些計算都假定脈沖時間長度為1。隨著存儲器介面數據速率增加的趨勢,大多數新技術的最低脈沖時間長度都大於1。

選擇技巧

存儲器的類型將決定整個嵌入式系統的操作和性能,因此存儲器的選擇是一個非常重要的決策。無論系統是採用電池供電還是由市電供電,應用需求將決定存儲器的類型(易失性或非易失性)以及使用目的(存儲代碼、數據或者兩者兼有)。另外,在選擇過程中,存儲器的尺寸和成本也是需要考慮的重要因素。對於較小的系統,微控制器自帶的存儲器就有可能滿足系統要求,而較大的系統可能要求增加外部存儲器。為嵌入式系統選擇存儲器類型時,需要考慮一些設計參數,包括微控制器的選擇、電壓范圍、電池壽命、讀寫速度、存儲器尺寸、存儲器的特性、擦除/寫入的耐久性以及系統總成本。

選擇存儲器時應遵循的基本原則

1、內部存儲器與外部存儲器

一般情況下,當確定了存儲程序代碼和數據所需要的存儲空間之後,設計工程師將決定是採用內部存儲器還是外部存儲器。通常情況下,內部存儲器的性價比最高但靈活性最低,因此設計工程師必須確定對存儲的需求將來是否會增長,以及是否有某種途徑可以升級到代碼空間更大的微控制器。基於成本考慮,人們通常選擇能滿足應用要求的存儲器容量最小的微控制器,因此在預測代碼規模的時候要必須特別小心,因為代碼規模增大可能要求更換微控制器。目前市場上存在各種規模的外部存儲器器件,我們很容易通過增加存儲器來適應代碼規模的增加。有時這意味著以封裝尺寸相同但容量更大的存儲器替代現有的存儲器,或者在匯流排上增加存儲器。即使微控制器帶有內部存儲器,也可以通過增加外部串列EEPROM或快閃記憶體來滿足系統對非易失性存儲器的需求。

2、引導存儲器

在較大的微控制器系統或基於處理器的系統中,設計工程師可以利用引導代碼進行初始化。應用本身通常決定了是否需要引導代碼,以及是否需要專門的引導存儲器。例如,如果沒有外部的定址匯流排或串列引導介面,通常使用內部存儲器,而不需要專門的引導器件。但在一些沒有內部程序存儲器的系統中,初始化是操作代碼的一部分,因此所有代碼都將駐留在同一個外部程序存儲器中。某些微控制器既有內部存儲器也有外部定址匯流排,在這種情況下,引導代碼將駐留在內部存儲器中,而操作代碼在外部存儲器中。這很可能是最安全的方法,因為改變操作代碼時不會出現意外地修改引導代碼。在所有情況下,引導存儲器都必須是非易失性存儲器。

可以使用任何類型的存儲器來滿足嵌入式系統的要求,但終端應用和總成本要求通常是影響我們做出決策的主要因素。有時,把幾個類型的存儲器結合起來使用能更好地滿足應用系統的要求。例如,一些PDA設計同時使用易失性存儲器和非易失性存儲器作為程序存儲器和數據存儲器。把永久的程序保存在非易失性ROM中,而把由用戶下載的程序和數據存儲在有電池支持的易失性DRAM中。不管選擇哪種存儲器類型,在確定將被用於最終應用系統的存儲器之前,設計工程師必須仔細折中考慮各種設計因素。

C. cpu,存儲器主要性能指標有哪些,含義

是CPU的工作頻率。一般說來,一個時鍾周期完成的指令數是固定的,所以主頻越高,CPU的速度也就越快了。不過由於各種CPU的內部結構也不盡相同,所以並不能完全用主頻來概括CPU的性能。至於外頻就是系統匯流排的工作頻率;而倍頻則是指CPU外頻與主頻相差的倍數。用公式表示就是:主頻=外頻×倍頻。

2、內存匯流排速度或者叫系統匯流排速度,一般等同於CPU的外頻。內存匯流排的速度對整個系統性能來說很重要,由於內存速度的發展滯後於CPU的發展速度,為了緩解內存帶來的瓶頸,所以出現了二級緩存,來協調兩者之間的差異,而內存匯流排速度就是指CPU與二級(L2)高速緩存和內存之間的工作頻率。

3、L1高速緩存,也就是我們經常說的一級高速緩存。在CPU裡面內置了高速緩存可以提高CPU的運行效率。內置的L1高速緩存的容量和結構對CPU的性能影響較大,不過高速緩沖存儲器均由靜態RAM組成,結構較復雜,在CPU管芯面積不能太大的情況下,L1級高速緩存的容量不可能做得太大。採用回寫(WriteBack)結構的高速緩存。它對讀和寫操作均有可提供緩存。而採用寫通(Write-through)結構的高速緩存,僅對讀操作有效。在486以上的計算機中基本採用了回寫式高速緩存。在目前流行的處理器中,奔騰Ⅲ和Celeron處理器擁有32KB的L1高速緩存,奔騰4為8KB,而AMD的Duron和Athlon處理器的L1高速緩存高達128KB。

4、L2高速緩存,指CPU第二層的高速緩存,第一個採用L2高速緩存的是奔騰Pro處理器,它的L2高速緩存和CPU運行在相同頻率下的,但成本昂貴,市場生命很短,所以其後奔騰II的L2高速緩存運行在相當於CPU頻率一半下的。接下來的Celeron處理器又使用了和CPU同速運行的L2高速緩存,現在流行的CPU,無論是AthlonXP和奔騰4,其L2高速緩存都是和CPU同速運行的。除了速度以外,L2高速緩存容量也會影響CPU的性能,原則是越大越好,現在家庭用CPU容量最大的是512KB,而伺服器和工作站上用CPU的L2高速緩存更高達1MB-3MB。

5、流水線技術、超標量。流水線(pipeline)是Intel首次在486晶元中開始使用的。流水線的工作方式就象工業生產上的裝配流水線。在CPU中由5~6個不同功能的電路單元組成一條指令處理流水線,然後將一條X86指令分成5~6步後再由這些電路單元分別執行,這樣就能實現在一個CPU時鍾周期完成一條指令,因此提高了CPU的運算速度。超流水線是指某型CPU內部的流水線超過通常的5~6步以上,例如奔騰4的流水線就長達20步。將流水線設計的步(級)數越多,其完成一條指令的速度越快,因此才能適應工作主頻更高的CPU。超標量是指在一個時鍾周期內CPU可以執行一條以上的指令。這在486或者以前的CPU上是很難想像的,只有奔騰級以上CPU才具有這種超標量結構;這是因為現代的CPU越來越多的採用了RISC技術,所以才會有超標量的CPU。

6、協處理器或者叫數學協處理器。在486以前的CPU裡面,是沒有內置協處理器的。由於協處理器主要的功能就是負責浮點運算,因此386、286、8088等等微機CPU的浮點運算性能都相當落後,自從486以後,CPU一般都內置了協處理器,協處理器的功能也不再局限於增強浮點運算。現在CPU的浮點單元(協處理器)往往對多媒體指令進行了優化。比如Intel的MMX技術,MMX是「多媒體擴展指令集」的縮寫。MMX是Intel公司在1996年為增強奔騰CPU在音像、圖形和通信應用方面而採取的新技術。為CPU新增加57條MMX指令,把處理多媒體的能力提高了60%左右。現在的CPU已經普遍內置了這些多媒體指令集,例如現在奔騰4內置了SSE2指令集,而AthlonXP則內置增強型的3DNow!指令集。

7、工作電壓。工作電壓指的也就是CPU正常工作所需的電壓。早期CPU(386、486)由於工藝落後,它們的工作電壓一般為5V(奔騰等是3.5V/3.3V/2.8V等),隨著CPU的製造工藝與主頻的提高,CPU的工作電壓有逐步下降的趨勢,Intel最新出品的Tualatin核心Celeron已經採用1.475V的工作電壓了。低電壓能解決耗電過大和發熱過高的問題。這對於筆記本電腦尤其重要。

8、亂序執行和分枝預測,亂序執行是指CPU採用了允許將多條指令不按程序規定的順序分開發送給各相應電路單元處理的技術。分枝是指程序運行時需要改變的節點。分枝有無條件分枝和有條件分枝,其中無條件分枝只需要CPU按指令順序執行,而條件分枝則必須根據處理結果再決定程序運行方向是否改變,因此需要「分枝預測」技術處理的是條件分枝。

9、製造工藝,製造工藝雖然不會直接影響CPU的性能,但它可以可以極大地影響CPU的集成度和工作頻率,製造工藝越精細,CPU可以達到的頻率越高,集成的晶體管就可以更多。第一代奔騰CPU的製造工藝是0.35微米,最高達到266Mhz的頻率,PII和賽揚是0.25微米,頻率最高達到450Mhz。銅礦核心的奔騰Ⅲ製造工藝縮小到了0.18微米,最高頻率達到1.13Ghz。最新Northwood核心的奔騰4CPU製造工藝達到0.13微米,目前頻率已經達到2.4Ghz,估計達到3Ghz也沒有問題。在明年,IntelCPU的製造工藝會達到0.09毫米。

D. 靜態RAM基本存儲電路

那個T3,T4是有源負載,相當於電阻,T3是T1的負載電阻,T4是T2的負載電阻,都是導通的,為T1,T2提供漏極電壓的。而真正導通和截止形成反相的,有兩個穩定狀態的是T1,T2。因為在集成電路內部不方便做電阻,所以,就用這種電路做電阻了。

E. 電視機存儲器的電壓從哪來的!是不是一定是3個5v

ac3電源輸出幾組電壓 一般是從12v這路 dcdc轉換得5v 再經一個三端穩壓器 得3.3v flash電源 也就是你說的存儲器供電 大半都是3.3v的

F. 請教如何從存儲器的型號區分其工作電壓

我的拷貝器是3.3v供電的,復制存儲器沒有發現問題,大多數存儲器可以工作在3.3v
-5v之間。

G. 存儲器25q64fva1g的工作電壓是多少

這個存儲器是25q64fvaig,先糾正下,另外工作電壓是2.7-3.6v

H. 計算機存儲器可分為哪幾類只要區別是什麼

計算機存儲器可分為內存和外存兩大類。

內存和外存的區別:

1,性質不同:

外部存儲器是指除計算機存儲器和CPU緩存以外的存儲器,在斷電後仍能存儲數據。常用外存包括硬碟、軟盤、光碟、U盤等。

存儲器是計算機中最重要的部件之一。它是與CPU通信的橋梁。計算機中的所有程序都在內存中運行,因此內存的性能對計算機有很大的影響。

2,信息存儲方面不同:

計算機完成作業後,內存存儲設備不需要存儲任何信息。因此,如果內存中沒有信息,則在內存中找不到所需的內容。無法保存在內存模塊上。

保存的信息只能保存在外部存儲器中,如U盤和軟盤。同時,外部存儲容量大,便於攜帶,您可以隨時找到想要的存儲信息。

3,兩者的運行速度不同:

外部存儲器可以長期保存數據,交換速度比較慢,存儲器的交換速度很快,但文件不能永久保存,斷電文件消失。

內存作為一種臨時存儲設備,在計算數據或執行程序時是一種臨時存儲設備。在日常生活中,它不適合長期存儲設備,因此使用時間有限。

(8)存儲器負載管電壓擴展閱讀:

內存的工作速度和存儲容量對系統的整體性能、系統的規模和效率都有很大的影響。存儲器是由大規模集成電路構成的半導體存儲器。它可以分為RAM和ROM。

RAM中的信息可以隨機讀寫,但不能長期保存。一旦電源關閉,RAM中的信息將不會被保存。

隨機存取存儲器所採用的存儲單元工作原理的不同又分為靜態隨機存儲器SRAM和靜態隨機存器DRAM。

SRAM採用穩態電路(如觸發器)作為存儲單元,在正常工作狀態下存儲信息,保持穩定,可多次讀取,存取速度比DRAM快,但由於單元電路的復雜性,集成度低於DRAM,價格較高。

I. 3600的內存條電壓是多少

3600的內存條電壓是1.5伏。3600內存條多少電壓一般內存條的電壓都是1.5伏,只有極特殊的主板或者電腦才會出現不同的電壓。

還有根您的主板內存條,具體可以插幾條的電壓,有可能也是不一樣的選擇,電源時應盡量選擇高瓦數的,以免帶來硬體不穩定。

內存條分類

內存一般採用半導體存儲單元,包括隨機存儲器RAM,只讀存儲器ROM,以及高速緩存CACHE,只不過因為RAM是其中最重要的存儲器,synchronousSDRAM同步動態隨機存取存儲器SDRAM為168腳,這是目前PENTIUM及以上機型使用的內存。

SDRAM將CPU與RAM通過一個相同的時鍾鎖在一起,使CPU和RAM能夠共享一個時鍾周期,以相同的速度同步工作,每一個時鍾脈沖的上升沿便開始傳遞數據,速度比EDO內存提高50%。

DDR,RAM,SDRAM的更新換代產品,他允許在時鍾脈沖的上升沿和下降沿傳輸數據,這樣不需要提高時鍾的頻率就能加倍提高SDRAM的速度。

J. 存儲器的結構

1cpu的內部
編輯
存儲器結構


存儲器結構

第一層:通用寄存器堆
第二層:指令與數據緩沖棧
第三層:高速緩沖存儲器
第四層:主儲存器(DRAM)
第五層:聯機外部儲存器(硬磁碟機)
第六層:離線外部儲存器(磁帶、光碟存儲器等)
這就是存儲器的層次結構~~~ 主要體現在訪問速度~~~

2工作特點
編輯

存儲器結構

存儲器結構① 設置多個存儲器並且使他們並行工作。本質:增添瓶頸部件數目,使它們並行工作,從而減緩固定瓶頸。
② 採用多級存儲系統,特別是Cache技術,這是一種減輕存儲器帶寬對系統性能影響的最佳結構方案。本質:把瓶頸部件分為多個流水線部件,加大操作時間的重疊、提高速度,從而減緩固定瓶頸。

③ 在微處理機內部設置各種緩沖存儲器,以減輕對存儲器存取的壓力。增加CPU中寄存器的數量,也可大大緩解對存儲器的壓力。本質:緩沖技術,用於減緩暫時性瓶頸。
一、RAM(Random Access Memory,隨機存取存儲器)
RAM的特點是:電腦開機時,操作系統和應用程序的所有正在運行的數據和程序都會放置其中,並且隨時可以對存放在裡面的數據進行修改和存取。它的工作需要由持續的電力提供,一旦系統斷電,存放在裡面的所有數據和程序都會自動清空掉,並且再也無法恢復。

3具體結構分類
編輯
根據組成元件的不同,RAM內存又分為以下十八種:

01.DRAM(Dynamic RAM,動態隨機存取存儲器)
這是最普通的RAM,一個電子管與一個電容器組成一個位存儲單元,DRAM將每個內存位作為一個電荷保存在位存儲


存儲器結構

存儲器結構單元中,用電容的充放電來做儲存動作,但因電容本身有漏電問題,因此必須每幾微秒就要刷新一次,否則數據會丟失。存取時間和放電時間一致,約為2~4ms。因為成本比較便宜,通常都用作計算機內的主存儲器。
02.SRAM(Static RAM,靜態隨機存取存儲器)
靜態,指的是內存裡面的數據可以長駐其中而不需要隨時進行存取。每6顆電子管組成一個位存儲單元,因為沒有電容器,因此無須不斷充電即可正常運作,因此它可以比一般的動態隨機處理內存處理速度更快更穩定,往往用來做高速緩存。

03.VRAM(Video RAM,視頻內存)

它的主要功能是將顯卡的視頻數據輸出到數模轉換器中,有效降低繪圖顯示晶元的工作負擔。它採用雙數據口設計,其中一個數據口是並行式的數據輸出入口,另一個是串列式的數據輸出口。多用於高級顯卡中的高檔內存。

04.FPM DRAM(Fast Page Mode DRAM,快速頁切換模式動態隨機存取存儲器)
改良版的DRAM,大多數為72PIN或30Pin的模塊。傳統的DRAM在存取一個BIT的數據時,必須送出行地址和列地址各一次才能讀寫數據。而FRM DRAM在觸發了行地址後,如果CPU需要的地址在同一行內,則可以連續輸出列地址而不必再輸出行地址了。由於一般的程序和數據在內存中排列的地址是連續的,這種情況下輸出行地址後連續輸出列地址就可以得到所需要的數據。FPM將記憶體內部隔成許多頁數Pages,從512B到數KB不等,在讀取一連續區域內的數據時,就可以通過快速頁切換模式來直接讀取各page內的資料,從而大大提高讀取速度。在96年以前,在486時代和PENTIUM時代的初期,FPM DRAM被大量使用。

05.EDO DRAM(Extended Data Out DRAM,延伸數據輸出動態隨機存取存儲器)
這是繼FPM之後出現的一種存儲器,一般為72Pin、168Pin的模塊。它不需要像FPM DRAM那樣在存取每一BIT 數據時必須輸出行地址和列地址並使其穩定一段時間,然後才能讀寫有效的數據,而下一個BIT的地址必須等待這次讀寫操作完成才能輸出。因此它可以大大縮短等待輸出地址的時間,其存取速度一般比FPM模式快15%左右。它一般應用於中檔以下的Pentium主板標准內存,後期的486系統開始支持EDO DRAM,到96年後期,EDO DRAM開始執行。。


存儲器結構

存儲器結構06.BEDO DRAM(Burst Extended Data Out DRAM,爆發式延伸數據輸出動態隨機存取存儲器)
這是改良型的EDO DRAM,是由美光公司提出的,它在晶元上增加了一個地址計數器來追蹤下一個地址。它是突發式的讀取方式,也就是當一個數據地址被送出後,剩下的三個數據每一個都只需要一個周期就能讀取,因此一次可以存取多組數據,速度比EDO DRAM快。但支持BEDODRAM內存的主板可謂少之又少,只有極少幾款提供支持(如VIA APOLLO VP2),因此很快就被DRAM取代了。
07.MDRAM(Multi-Bank DRAM,多插槽動態隨機存取存儲器)
MoSys公司提出的一種內存規格,其內部分成數個類別不同的小儲存庫 (BANK),也即由數個屬立的小單位矩陣所構成,每個儲存庫之間以高於外部的資料速度相互連接,一般應用於高速顯示卡或加速卡中,也有少數主機板用於L2高速緩存中。

08.WRAM(Window RAM,窗口隨機存取存儲器)
韓國Samsung公司開發的內存模式,是VRAM內存的改良版,不同之處是它的控制線路有一、二十組的輸入/輸出控制器,並採用EDO的資料存取模式,因此速度相對較快,另外還提供了區塊搬移功能(BitBlt),可應用於專業繪圖工作上。

09.RDRAM(Rambus DRAM,高頻動態隨機存取存儲器)
Rambus公司獨立設計完成的一種內存模式,速度一般可以達到500~530MB/s,是DRAM的10倍以上。但使用該內存後內存控制器需要作相當大的改變,因此它們一般應用於專業的圖形加速適配卡或者電視游戲機的視頻內存中。

10.SDRAM(Synchronous DRAM,同步動態隨機存取存儲器)
這是一種與CPU實現外頻Clock同步的內存模式,一般都採用168Pin的內存模組,工作電壓為3.3V。 所謂clock同步是指內存能夠與CPU同步存取資料,這樣可以取消等待周期,減少數據傳輸的延遲,因此可提升計算機的性能和效率。

11.SGRAM(Synchronous Graphics RAM,同步繪圖隨機存取存儲器)
SDRAM的改良版,它以區塊Block,即每32bit為基本存取單位,個別地取回或修改存取的資料,減少內存整體讀寫的次數,另外還針對繪圖需要而增加了繪圖控制器,並提供區塊搬移功能(BitBlt),效率明顯高於SDRAM。

12.SB SRAM(Synchronous Burst SRAM,同步爆發式靜態隨機存取存儲器)
一般的SRAM是非同步的,為了適應CPU越來越快的速度,需要使它的工作時脈變得與系統同步,這就是SB SRAM產生的原因。

13.PB SRAM(Pipeline Burst SRAM,管線爆發式靜態隨機存取存儲器)
CPU外頻速度的迅猛提升對與其相搭配的內存提出了更高的要求,管線爆發式SRAM取代同步爆發式SRAM成為必然的選擇,因為它可以有效地延長存取時脈,從而有效提高訪問速度。

14.DDR SDRAM(Double Data Rate二倍速率同步動態隨機存取存儲器)
作為SDRAM的換代產品,它具有兩大特點:其一,速度比SDRAM有一倍的提高;其二,採用了DLL(Delay Locked Loop:延時鎖定迴路)提供一個數據濾波信號。這是目前內存市場上的主流模式。

15.SLDRAM (Synchronize Link,同步鏈環動態隨機存取存儲器)
這是一種擴展型SDRAM結構內存,在增加了更先進同步電路的同時,還改進了邏輯控制電路,不過由於技術顯示,


存儲器結構

存儲器結構投入實用的難度不小。
16.CDRAM(CACHED DRAM,同步緩存動態隨機存取存儲器)
這是三菱電氣公司首先研製的專利技術,它是在DRAM晶元的外部插針和內部DRAM之間插入一個SRAM作為二級CACHE使用。當前,幾乎所有的CPU都裝有一級CACHE來提高效率,隨著CPU時鍾頻率的成倍提高,CACHE不被選中對系統性能產生的影響將會越來越大,而CACHE DRAM所提供的二級CACHE正好用以補充CPU一級CACHE之不足,因此能極大地提高CPU效率。

17.DDRII(Double Data Rate Synchronous DRAM,第二代同步雙倍速率動態隨機存取存儲器)
DDRII 是DDR原有的SLDRAM聯盟於1999年解散後將既有的研發成果與DDR整合之後的未來新標准。DDRII的詳細規格目前尚未確定。

18.DRDRAM (Direct Rambus DRAM)
是下一代的主流內存標准之一,由Rambus 公司所設計發展出來,是將所有的接腳都連結到一個共同的Bus,這樣不但可以減少控制器的體積,已可以增加資料傳送的效率。

二、ROM(READ Only Memory,只讀存儲器)

ROM是線路最簡單半導體電路,通過掩模工藝,一次性製造,在元件正常工作的情況下,其中的代碼與數據將永久保存,並且不能夠進行修改。一般應用於PC系統的程序碼、主機板上的 BIOS (基本輸入/輸出系統Basic Input/Output System)等。它的讀取速度比RAM慢很多。

4組成元件分類
編輯
ROM內存又分為以下五種:


存儲器結構

存儲器結構1.MASK ROM(掩模型只讀存儲器)
製造商為了大量生產ROM內存,需要先製作一顆有原始數據的ROM或EPROM作為樣本,然後再大量復制,這一樣本就是MASK ROM,而燒錄在MASK ROM中的資料永遠無法做修改。它的成本比較低。
2.PROM(Programmable ROM,可編程只讀存儲器)
這是一種可以用刻錄機將資料寫入的ROM內存,但只能寫入一次,所以也被稱為「一次可編程只讀存儲器」(One Time Progarmming ROM,OTP-ROM)。PROM在出廠時,存儲的內容全為1,用戶可以根據需要將其中的某些單元寫入數據0(部分的PROM在出廠時數據全為0,則用戶可以將其中的部分單元寫入1), 以實現對其「編程」的目的。

3.EPROM(Erasable Programmable,可擦可編程只讀存儲器)
這是一種具有可擦除功能,擦除後即可進行再編程的ROM內存,寫入前必須先把裡面的內容用紫外線照射它的IC卡上


存儲器結構

存儲器結構的透明視窗的方式來清除掉。這一類晶元比較容易識別,其封裝中包含有「石英玻璃窗」,一個編程後的EPROM晶元的「石英玻璃窗」一般使用黑色不幹膠紙蓋住, 以防止遭到陽光直射。
4.EEPROM(Electrically Erasable Programmable,電可擦可編程只讀存儲器)
功能與使用方式與EPROM一樣,不同之處是清除數據的方式,它是以約20V的電壓來進行清除的。另外它還可以用電信號進行數據寫入。這類ROM內存多應用於即插即用(PnP)介面中。

5.Flash Memory(快閃記憶體)
這是一種可以直接在主機板上修改內容而不需要將IC拔下的內存,當電源關掉後儲存在裡面的資料並不會流失掉,在寫入資料時必須先將原本的資料清除掉,然後才能再寫入新的資料,缺點為寫入資料的速度太慢。

熱點內容
網易雲上傳歌詞手機 發布:2025-01-28 03:42:51 瀏覽:61
m3u8緩存文件 發布:2025-01-28 03:42:51 瀏覽:547
編程算損耗 發布:2025-01-28 03:33:03 瀏覽:456
sql存儲過程返回多個結果 發布:2025-01-28 03:24:03 瀏覽:463
長安歐尚科賽哪個配置值得購買 發布:2025-01-28 03:19:35 瀏覽:116
c全排列演算法 發布:2025-01-28 03:18:16 瀏覽:754
梵蒂岡頂級時裝ftp 發布:2025-01-28 03:03:36 瀏覽:695
手游腳本有前途嗎 發布:2025-01-28 02:46:55 瀏覽:379
抓包編程 發布:2025-01-28 02:42:41 瀏覽:930
安卓平板上怎麼設置熱點 發布:2025-01-28 02:36:33 瀏覽:718