當前位置:首頁 » 存儲配置 » 提高訪問速度用什麼存儲器

提高訪問速度用什麼存儲器

發布時間: 2022-04-14 10:34:12

『壹』 訪問速度最快的存儲器是Cache 還是內存

CACHE速度比內存快,因為CPU的速度太快,內存跟不上,所以就出現了CHCHE,就是我們平時說的L1和L2,L1和L2會提前把CPU可能要用到的信息提前從內存中提取,這樣就可以提高CPU的效率,不用等待緩慢的內存了,因為CACHE成本高,而且因為速度快和用途的原因,不會代替內存,只是作為提高CPU運算效率的一種解決方案.希望以後完全代替內存,這樣CPU也不會有什麼1級或2級緩存了. 仁者見仁智者見智吧。後面發展成什麼樣大家誰都說不準,可能以後核更多了,速度更快了,還會出新東西呢。

『貳』 在計算機中,訪問速度最快的存儲器是什麼

在計算機的各種存儲器中,訪問速度最快的是磁帶存儲器

磁帶存儲器:以磁帶為存儲介質,由磁帶機及其控制器組成的存儲設備,是計算機的一種輔助存儲器。磁帶機由磁帶傳動機構和磁頭等組成,能驅動磁帶相對磁頭運動,用磁頭進行電磁轉換,在磁帶上順序地記錄或讀出數據。磁帶存儲器是計算機外圍設備之一。磁帶控制器是中央處理器在磁帶機上存取數據用的控制電路裝置。磁帶存儲器以順序方式存取數據。存儲數據的磁帶可離線保存和互換讀出。

(2)提高訪問速度用什麼存儲器擴展閱讀:

磁帶存儲器物理特性

磁性材料被磁化以後,工作點總是在磁滯回線上。只要外加的正向脈沖電流(即外加磁場)幅度足夠大,那麼在電流消失後磁感應強度B並不等於零,而是處在+Br狀態(正剩磁狀態)。反之,當外加負向脈沖電流時,磁感應強度B將處在-Br狀態(負剩磁狀態)。

當磁性材料被磁化後,會形成兩個穩定的剩磁狀態,就像觸發器電路有兩個穩定的狀態一樣。如果規定用+Br狀態表示代碼1,-Br狀態表示代碼0,那麼要使磁性材料記憶1,就要加正向脈沖電流,使磁性材料正向磁化;要使磁性材料記憶0,則要加負向脈沖電流,使磁性材料反向磁化。磁性材料上呈現剩磁狀態的地方形成了一個磁化元或存儲元,它是記錄一個二進制信息位的最小單位。

『叄』 為什麼多結構體存儲器可以提高訪問速度

多個人的力不比一個人的力大嗎?

『肆』 提高存儲器速度可採用哪些措施,請說出至少五種措施。

1、採用高速器件

2、採用cache

3、採用多體交叉存儲器

4、採用用雙埠存儲器

5、採用相聯存儲器,加長存儲器的字長。

(4)提高訪問速度用什麼存儲器擴展閱讀

磁碟存儲訪問時間

磁碟設備在工作時以恆定速率旋轉。

為了讀或寫,磁頭必須能移動到所要求的磁軌上,並等待所要求的扇區的開始位置旋轉到磁頭下,然後再開始讀或寫數據。故可把對磁碟的訪問時間分成以下三部分。

1)尋道時間

這是指把磁臂(磁頭)移動到指定磁軌上所經歷的時間。該時間是啟動磁臂的時間s與磁頭移動n條磁軌所花費的時間之和,即

=m×n+s

其中,m是一常數,與磁碟驅動器的速度有關。對於一般磁碟,m=0.2;對於高速磁碟,

m≤0.1,磁臂的啟動時間約為2ms。

這樣,對於一般的溫盤,其尋道時間將隨尋道距離的

增加而增大,大體上是5~30ms。

2)旋轉延遲時間

這是指定扇區移動到磁頭下面所經歷的時間。不同的磁碟類型中,旋轉速度至少相差一個數量級,如軟盤為300r/min,硬碟一般為7200~15000r/min,甚至更高。

對於磁碟旋轉延遲時間而言,如硬碟,旋轉速度為15000r/min,每轉需時4ms,平均旋轉延遲時間為2ms;而軟盤,其旋轉速度為300r/min或600r/min,這樣,平均為50~100ms。

3)傳輸時間

這是指把數據從磁碟讀出或向磁碟寫入數據所經歷的時間。Tt的大小與每次所讀/寫的位元組數b和旋轉速度有關:

其中,r 為磁碟每秒鍾的轉數;N 為一條磁軌上的位元組數,當一次讀/寫的位元組數相當於半條

磁軌上的位元組數時,與相同。因此,可將訪問時間表示為

由上式可以看出,在訪問時間中,尋道時間和旋轉延遲時間基本上都與所讀/寫數據的多少無關,而且它通常占據了訪問時間中的大頭。

例如,我們假定尋道時間和旋轉延遲時間平均為20ms,而磁碟的傳輸速率為10MB/s,如果要傳輸10KB的數據,此時總的訪問時間為21ms,可見傳輸時間所佔比例是非常小的。

當傳輸100KB數據時,其訪問時間也只是30ms,即當傳輸的數據量增大10倍時,訪問時間只增加約50%。

目前磁碟的傳輸速率已達80MB/s以上,數據傳輸時間所佔的比例更低。可見,適當地集中數據(不要太零散)傳輸,將有利於提高傳輸效率。

『伍』 在計算機中,訪問速度最快的存儲器是 A硬碟B U盤C光碟D內存

在計算機中,訪問速度最快的存儲器是:D內存

『陸』 在計算機的各種存儲器中,訪問速度最快的是( )。

選擇D,磁帶存儲器。

磁帶存儲器的記錄方式主要以形成不同寫入電流波形的方式記錄,所以訪問速度最快。而且能驅動磁帶相對磁頭運動,用磁頭進行電磁轉換,在磁帶上順序地記錄或讀出數據。

磁帶存儲器可以通過磁帶控制器模型大型機所共享。磁帶存儲器可以處理最多4Gbps傳輸速度的光纖連接裝置——這是大型機光纖連通道連接專利。磁帶存儲器控制器也能夠支持磁碟驅動或者是光纖通道交換機多達4個標準的8 Gbps傳輸速度的光纖通道連接。

如果磁帶存儲器沒有足夠的FICON與合適長度和類型的光纖通道布線,各驅動、大型機以及存儲網路之間的連通性將不能實現。磁帶存儲器以及控制器也需要軟體升級和許可支持。這取決於數據中心當前的操作系統和許可模式。

(6)提高訪問速度用什麼存儲器擴展閱讀:

磁帶機結構原理:

普遍使用的磁帶機是快啟停式磁帶機。它由主動輪和帶盤驅動機構、磁帶導向和緩沖機構、磁頭、讀寫和驅動控制電路等組成。

磁帶傳動:以真空緩沖箱式磁帶機為例,磁帶由供帶盤經右緩沖箱、磁頭、主動輪、左緩沖箱到卷帶盤。

磁帶讀寫:磁帶運動時與磁頭接觸。磁頭線圈中通有電流時,磁頭間隙附近產生磁場,將磁帶上一個很小區域磁化。

數據組織:一盤磁帶有始端標記(BOT)和尾端標記(EOT),中間可記若干個文件。每個文件由1至若干個數據塊組成,兩個文件之間有帶標隔開。

磁帶控制器:一個磁帶控制器可聯數台磁帶機,控制磁帶機執行寫、讀、進退文件、進退數據塊等操作。

參考資料來源:網路-磁帶存儲器

『柒』 計算機中訪問速度最快的存儲器是

內存

瑞薩發布世界上速度最快的快閃記憶體存儲器

目前,瑞薩科技公司宣布開發出R1FV04G13R和R1FV04G14R 4千兆位(Gbit) AG-AND*1型快閃記憶體存儲器,可以提供世界上最快的10 M位元組/秒編程速度,用於電影和類似應用中的大容量數據的高速記錄。在2004年9月,將從日本開始樣品發貨,隨後在12月將開始批量生產。

R1FV04G13R和R1FV04G14R分別具有´8和´16位配置,可以提供下面的主要性能。

(1) 世界上最快的4千兆位快閃記憶體存儲器(晶元)

作為實現了多級單元技術*2和高速度的第二階段AG-AND型快閃記憶體存儲器,R1FV04G13R和R1FV04G14R即使在4千兆位容量下,也能達到10 M位元組/秒的快速編程速度。復制一個2小時的MPEG-4格式的電影,大約需要2分鍾就可以完成錄制。

(2) 小型晶元尺寸

由於使用90 nm工藝和改進的AG-AND快閃記憶體存儲器單元設計,實現了世界上最小的存儲單元。與1千兆位AG-AND型快閃記憶體存儲器相比,每千兆位的晶元面積大約縮小了三分之二。

這些新產品的發布使得電影和音樂等大容量內容的快速下載和傳送成為可能。相應地,其應用領域也從過去僅局限於數碼相機和個人計算機,現在可以擴展到移動終端和數字家用設備,擴大了使用快閃記憶體存儲器作為存儲介質的系統解決方案的應用范圍。

產品背景 >

高密度快閃記憶體存儲器作為一種橋接介質,正在溶入我們的生活之中,尤其是在移動應用方面,可以用作數碼相機和行動電話的圖像存儲存儲器、USB存儲器用作軟盤的替代物。下一代的快閃記憶體存儲卡需要更高的密度和更快的編程速度以處理快速數據下載,可以為大容量、高質量的動畫數據如電影提供便攜性。

為滿足這些需要,目前瑞薩科技大量生產130 nm工藝1千兆位AG-AND型快閃記憶體存儲器,通過使用輔助門(AG)防止單元間的干擾,以及使用公司在常規AND型快閃記憶體領域開發的多級單元技術,可以提供更小的單元面積和高達10 M位元組/秒的高編程速度。

為滿足更高密度的需要,同時又實現高速度,在2003年12月瑞薩科技開發出了第二代AG-AND型快閃記憶體存儲單元,通過改進第一代AG-AND型快閃記憶體存儲器單元的設計和使用90 nm工藝,使存儲器單元面積大約縮小了三分之一。現在瑞薩科技已經完成了R1FV04G13R和R1FV04G14R的商用開發,它們是世界上速度最快的 4千兆位小型AG-AND型快閃記憶體存儲器,使用第二代存儲器單元。

產品詳情 >

使用R1FV04G13R和R1FV04G14R,可以在單個晶元上配置512M位元組的記錄介質,提供的存儲能力大約相當於160分鍾的MPEG-4電影數據,大約等同於130個磁軌的MP3音樂數據,或大約500張4兆象素的數碼相機相片。

R1FV04G13R和 R1FV04G14R的特性總結如下。

(1) 世界上編程速度最快的4千兆位快閃記憶體存儲器(晶元),速度高達10 M位元組/秒。

和1千兆位產品一樣,使用熱電子注入編程方法*3和在單個晶元內同時進行4組編程操作,通過使用多級單元技術,實現了高達10 M位元組/秒的編程速度。

(2) 小型晶元尺寸

通過使用90 nm工藝和改進的第一代AG-AND型快閃記憶體存儲器源-漏*4結構,實現了世界上最小的0.016 μm2存儲單元面積。

與1千兆位 AG-AND型快閃記憶體存儲器相比,每千兆位晶元面積大約縮小了三分之二。

* 源-漏結構的改進:

使用了一種新結構,在AG上加電壓時,硅襯底上形成的逆溫層*5構成了存儲單元晶體管的源和漏。在常規的擴散層*6結構中,源和漏趨向於橫向擴散,但是,由於逆溫層僅在AG下面的襯底的極淺區域形成,因此可以縮小存儲單元的面積。

(3) 支持加電讀出功能(2K位元組大小)

系統加電時,不需要命令或地址輸入,通過控制兩個控制線(/CE 針和/RE針)就可以讀出多達2K位元組的數據。

(4) 在編程操作過程中具有高速緩沖存儲器編程功能,在擦除操作過程中,具有可編程數據輸入功能。

在器件編程過程中,可以對下一步2 K位元組的數據進行高速緩沖存儲器編程的功能,最多可以進行兩次(4 K位元組)。這使得系統可以很容易地分配匯流排進行下一個任務。在器件擦除過程中,可以進行一次高達2 K位元組的下一步數據輸入的功能。

(5) NAND介面

在命令級,R1FV04G13R和R1FV04G14R與NAND型快閃記憶體存儲器兼容,因此,對目前使用NAND型快閃記憶體存儲器的系統進行很少的軟體修改,就可以使用它們。

電源電壓是3.3 V,使用的封裝形式是48針TSOP 1型封裝,與1千兆位AG-AND型快閃記憶體存儲器的封裝尺寸相同。

未來的計劃包括為R1FV04G13R和R1FV04G14R開發控制器,面向高速快閃記憶體卡的應用開發,以及開發2千兆位AG-AND型快閃記憶體存儲器產品和使用新型存儲單元的1.8 V低壓產品。

我們也計劃開發具有兩個層迭4千兆位AG-AND型快閃記憶體存儲器的大容量8千兆位產品,使用新的封裝形式(WFLGA: 超細節距柵格陣列),在2004年12月將開始高密度安裝。

『捌』 微機中訪問速度最快儲存器是什麼

微機中訪問速度最快的存儲器是內存。中央處理器(CPU)直接與內存打交道,即CPU可以直接訪問內存。而外存儲器只能先將數據指令先調入內存然後再由內存調入CPU,CPU不能直接訪問外存儲器。CD-ROM、硬碟和U盤都屬於外存儲器,因此,內存儲器比外存儲器的訪問周期更短。

硬碟的特點是存儲容量大、存取速度快。硬碟可以進行格式化處理,格式化後,硬碟上的數據丟失。每台計算機可以安裝一塊以上的硬碟,擴大存儲容量。

CPU只能通過訪問硬碟存儲在內存中的信息來訪問硬碟。斷電後,硬碟中存儲的數據不會丟失。

內存是計算機寫入和讀取數據的中轉站,它的速度是最快的。存取周期最短的是內存,其次是硬碟,再次是光碟,最慢的是軟盤。

中央處理器(CPU)直接與內存打交道,即CPU可以直接訪問內存。而外存儲器只能先將數據指令先調入內存然後再由內存調入CPU,CPU不能直接訪問外存儲器。

『玖』 在微型計算機中,訪問速度最快的存儲器是什麼

CPU中的一級緩存最快

CPU進行處理的數據信息多是從內存中調取的,但CPU的運算速度要比內存快得多,為此在此傳輸過程中放置一存儲器,存儲CPU經常使用的數據和指令。這樣可以提高數據傳輸速度。可分一級緩存和二級緩存。

一級緩存

即L1 Cache。集成在CPU內部中,用於CPU在處理數據過程中數據的暫時保存。由於緩存指令和數據與CPU同頻工作,L1級高速緩存緩存的容量越大,存儲信息越多,可減少CPU與內存之間的數據交換次數,提高CPU的運算效率。但因高速緩沖存儲器均由靜態RAM組成,結構較復雜,在有限的CPU晶元面積上,L1級高速緩存的容量不可能做得太大。

二級緩存

即L2 Cache。由於L1級高速緩存容量的限制,為了再次提高CPU的運算速度,在CPU外部放置一高速存儲器,即二級緩存。工作主頻比較靈活,可與CPU同頻,也可不同。CPU在讀取數據時,先在L1中尋找,再從L2尋找,然後是內存,在後是外存儲器。所以L2對系統的影響也不容忽視。

熱點內容
米加小鎮更新大學的密碼是多少 發布:2024-11-20 11:33:21 瀏覽:587
加密文件夾免費下載 發布:2024-11-20 10:48:47 瀏覽:773
有什麼低配置好玩的單機游戲 發布:2024-11-20 10:22:18 瀏覽:700
去哪裡可以把手機密碼清除 發布:2024-11-20 10:17:06 瀏覽:530
什麼游戲適合電腦配置不高的玩 發布:2024-11-20 09:52:02 瀏覽:235
安卓如何拷貝微信聊天記錄 發布:2024-11-20 09:51:02 瀏覽:940
php中for 發布:2024-11-20 09:48:04 瀏覽:31
安卓手機用什麼軟體防止別人蹭網 發布:2024-11-20 09:37:18 瀏覽:840
頂級asmr助眠解壓赫敏 發布:2024-11-20 09:36:34 瀏覽:430
帝瓦雷演算法 發布:2024-11-20 09:16:11 瀏覽:54