熱空氣存儲
① 壓縮空氣儲存的能量與容器的關系
單位容器中儲存能量的多少,即儲能密度與儲氣的壓力有關,壓力越大,儲存的能量越多。
儲存的能量計算:(可以在熱力學書上找等溫過程過程功的計算公式)
由於等溫壓縮過程才能使得達到同樣壓力所耗功最少,因此我們考慮在等溫過程中的壓縮
假設壓縮空氣服從理想氣體定律,pV=nRT=constant
從一個過程的初始狀態A,到最終狀態B,假設絕對溫度恆定的TA=TB,我們的壓縮做作所需的功為(負),膨脹做功為(正),那麼壓縮耗功為:W=pAVAln(pA/pB)
例子:我們多少能源可以存儲在1立方米的儲存容器,在70巴(7.0兆帕)的壓力下,如果環境壓力是1巴(0.1兆帕)。在這種情況下,壓縮耗功即儲存的能量為:
W = 7.0兆帕×1立方米×ln(0.1兆帕/ 7.0兆帕)= -29.7MJ的。(符號代表壓縮外界輸入系統的功)
② 壓縮空氣儲存電量這是什麼原理
隨著經濟科學的不斷發展,人類對於電力的用量是越來越大,對於一些用傳統能源來發電的電力是遠遠不夠的,尤其是對不可再生資源的發電,總有一天可能會消耗殆盡。所以發展新能源發展和可循環發電的方法是當前工業發展及經濟發展所需要的。壓縮空氣儲存電量依靠當前的技術是可以實現的,並且壓縮空氣存儲電量的優點動態響應快、經濟價值高、對環境污染小;它的原理是利用現有的電力系統低容負荷狀態下多餘電能將空氣壓縮儲存在地下洞穴中,在需要的時候再放出來,然後經過加熱後通過燃氣輪機發電機組發電,以達到供應的需要。
壓縮空氣儲存電量是目前正在推廣的儲能電量系統,但是因為這是一個新的儲能系統,目前還沒有真正的推廣出來,所以目前是在逐年推廣的。
③ 儲存太陽能的方法有哪些
地面上接受到的太陽能受氣候、晝夜、季節的影響,具有間斷性和不穩定性。如果可以把太陽能儲存起來,就像水庫把水積蓄起來發電一樣,將是一個很不錯的辦法。因此,對於大規模利用太陽能的人來說把分散的太陽能儲存起來變得很重要。太陽能可以直接儲存,但是儲存的能量有限。如果想有效儲存太陽能,必須把太陽能轉換成其他形式儲存。目前由於技術所限,大容量、長時間、經濟地儲存太陽能還比較困難。實際上,儲存太陽能的道理比較簡單,比如我們在日常生活當中,用暖水瓶來保存熱水,就是一種對熱量的儲存。目前,儲存太陽能的方法主要有以下幾種。
一、直接儲存太陽能
我國東北地區有一種暖牆,用土坯、磚或混凝土砌成,牆裡面中空,牆的下面是火爐。在寒冷的冬天,點燃火爐,火爐的煙經過暖牆排到室外,暖牆被加熱之後,熱量儲存在暖牆里,需要十幾個小時之後才會變涼。這樣白天燒火爐,解決了夜間取暖問題。北方地區的火炕,也起到儲存熱量的作用。同樣道理,利用蓄熱材料也可實現太陽能的直接儲存。太陽能的直接儲存分為短期儲存和長期儲存兩類。短期儲存可以把太陽能儲存幾個小時或者幾天;長期儲存可以把太陽能儲存幾個月之久。例如太陽房的砂石,就可以起到短期儲存太陽能的作用,夜間使用的能量就是白天吸收太陽輻射能量,用於。
太陽池對太陽能的儲存就屬於長期儲存。太陽池是一種具有一定鹽濃度梯度的鹽水池,能用於採集和儲存太陽能。太陽光照射到太陽池的底部,太陽池底部的高濃度鹽水吸收太陽光的熱量之後,因為含鹽的水密度大,不會和上面的水發生對流,這樣高溫的水始終保存在水池的底部。另外,水池上部的清水像一層厚厚的玻璃,把水池底部的長波輻射阻擋回去,使水池的熱量不會流失。這樣,太陽能就可以在太陽池中被長期儲存了。
在實際應用中,水、沙、石子、土壤等都可作為儲能材料,但儲能有限。其中水的比熱容最大,應用較多。在太陽能低溫儲存中常用含結晶水的鹽類儲能,就是應用這個原理製造的太陽池。但在使用中要解決過冷和分層問題,以保證工作溫度和使用壽命。太陽能中溫儲存溫度一般在100℃以上、500℃以下,一般在300℃左右。可以作為中溫儲存的材料有高壓熱水、有機流體、共晶鹽等。太陽能高溫儲存溫度一般在500℃以上,目前正在試驗的材料有金屬鈉、熔融鹽等。1000℃以上極高溫儲存,可以採用氧化鋁和氧化鍺耐火球。
二、轉化為電能儲存
把太陽能轉變為其他的能是比直接儲存更先進的辦法,這也是目前比較常見的做法。比如利用太陽能發電,把發出的電輸入蓄電池進行儲存。常用的是蓄電池,正在研究開發的是超導儲能。世界上鉛酸蓄電池的發明已有100多年的歷史,它利用化學能和電能的可逆轉換實現充電和放電。鉛酸蓄電池價格較低,但使用壽命短,重量大,需要經常維護。
近來開發成功少維護、免維護的鉛酸蓄電池,使其性能有一定提高。目前,與光伏發電系統配套的儲能裝置大部分為鉛酸蓄電池。鎳—銅、鎳—鐵鹼性蓄電池使用維護方便,壽命長,重量輕,但價格較貴,一般在儲能量小的情況下使用。現有的蓄電池儲能密度較低,難以滿足大容量、長時間儲存電能的要求。最新開發的蓄電池還有銀鋅電池、鉀電池、鈉硫電池等。某些金屬或合金在極低溫度下成為超導體,理論上電能可以在一個超導無電阻的線圈內儲存無限長的時間。這種超導儲能不經過任何其他能量轉換直接儲存電能,效率高,啟動迅速,可以安裝在任何地點,尤其是在消費中心附近,不產生任何污染,但目前超導儲能在技術上還不是很成熟,需要繼續研究開發。
此外,也可以利用太陽能提水儲能,白天利用太陽能把水從低處提到高處的蓄水池中,夜裡從蓄水池放水,利用水的落差進行發電,就實現太陽能儲存了。
三、太陽能的化學儲存
利用化學反應物吸收太陽熱量,然後再通過化學反應放出熱量,也是一種很好的辦法。這種儲能方式有不少優點,比如儲熱量大,體積小,重量輕,化學反應產物可分離儲存,需要時才發生放熱反應,儲存時間長等。化學儲能的要求比較嚴格,真正能用於儲熱的化學反應必須滿足以下條件:反應可逆性好,無副反應;反應迅速;反應生成物易分離且能穩定儲存;反應物和生成物無毒、無腐蝕、無可燃性;反應放熱量大,反應物價格較低等。對化學反應儲存熱能尚需進行深入研究,一時難以實用。
四、轉化為氫能儲存
儲存太陽能除了以上辦法之外,還有一個好辦法就是把太陽能轉化為氫能儲存起來。氫能是一種高品位能源。太陽能可以通過分解水或其他途徑轉換為氫能,氫可以大量、長時間儲存。它能以各種形態或化合物(如氨、甲醇等)形式儲存。氣相儲存儲氫量少時,可以採用常壓濕式氣櫃、高壓容器儲存;大量儲存時,可以儲存在地下儲倉、由不漏水土層覆蓋的含水層、鹽穴和人工洞穴內。液相儲存具有較高的單位體積儲氫量,但蒸發損失大。將氫氣轉化為液氫需要進行氫的純化和壓縮,正氫—仲氫轉化,最後進行液化。固相儲氫是利用金屬氫化物固相儲氫,儲氫密度較高,安全性好。目前,一般能滿足固相儲氫要求的材料主要是稀土系合金和鈦系合金。金屬氫化物儲氫技術研究已有30餘年歷史,取得了不少成果,但仍有許多問題有待研究解決。我國對金屬氫化物儲氫技術進行了多年研究,取得一些成果,目前研究開發工作正在深入。
五、轉化為機械能儲存
太陽能轉換為熱能,推動熱機壓縮空氣,能夠儲存太陽能。飛輪儲能是機械能儲存中最受人關注的。20世紀50年代,就有利用高速旋轉的飛輪儲能的設想,但一直沒有突破性進展。近年來,由於高強度碳纖維和玻璃纖維的出現,以及電磁懸浮、超導磁浮技術的發展,使飛輪轉速大大提高,增加了單位質量的動能儲存量。
六、塑晶儲存
美國在1984年推出一種塑晶家庭取暖材料。塑晶學名新戊二醇,它和液晶相似,有晶體的三維周期性,但力學性質像塑料。它能在恆定溫度下儲熱和放熱,塑晶在恆溫44℃時,白天吸收太陽能而儲存熱能,晚上則放出白天儲存的熱能。目前我國對塑晶也進行了一些實驗研究,但一直還沒實際應用。
七、太陽能-生物質能轉換
光合作用是植物、藻類和某些細菌利用葉綠素,在可見光的照射下,將二氧化碳和水轉化為有機物,並釋放出氧氣的生化過程。通過植物葉片的光合作用,太陽能把二氧化碳和水合成有機物,並釋放出氧氣。地球上最大規模轉換太陽能的過程就是光合作用了。我們現在大量應用的石油、煤炭都是遠古光合作用固定的太陽能。雖然光合作用對太陽能的轉換率很低,但是可以通過利用荒山荒地種植能源作物來間接擴大對太陽能的轉換。
④ 有哪些氣體存儲方式(力學、材料、化學)
目前對於儲存氫氣的材料的研究比較多,因為氫氣是公認的最有希望的新能源之一,卻因為難以大量儲存而受限(高壓儲氣罐方式比較危險,而且氫氣極難液化),用「儲氫材料」搜一下可以找到大量資料,最原始的儲氫材料可能是金屬鈀,鈀能夠把氫氣原子化,氫原子能夠在金屬鈀中擴散,也正因此鈀能催化很多氫氣參與的反應,這是一對很奇特的組合;似乎還有「儲氧材料」。 我關注了六年的多孔材料儲存氣體,這里的多孔材料包含沸石與分子篩,活性炭,金屬有機骨架Mof,沸石咪唑骨架ZIF,碳納米管等等。只能說,吸附存儲氣體還僅在實驗階段,大規模應用仍然較少,尤其是氫氣存儲,絕大部分材料只有在77K下才能到DOE的商用儲氫標准(記得是6 wt.%),常溫下慘不忍睹,所以後來老美在奧黑上台後放棄了。後來就是儲存天然氣,效果比氫氣好,個別材料可以實現DOE要求的35 bar下180 L/L的要求,但也是個別材料,實驗室階段的,成本不得了,而且是粉末吸附,沒有粘合成顆粒,沒有做過穩定性實驗。之後就是二氧化碳捕捉,現在看來這個是最容易實現的,性能好的比較多,因為二氧化碳分子的特性,功能材料經過改造吸附量超大,是上述三種氣體中應該最先可能工業化的體系。低溫的時候,氣體就會液化,比如100度以下 水蒸氣就會變為水 當然這是比較高的,低的是液氮,液氦 要接近絕對零度-273才液化。要想高溫液化就要增加壓力像煤氣罐 強還原性物質能把水中的氫離子置換出來變成氫氣(大量)比如鉀 鈉 但是鉀鈉在空氣中就會被氧化所以需要密閉保存。酸和鹼性物質反應有的能放出氣體 反應很快,比如鹽酸和純鹼(or 小蘇打)
⑤ 什麼物質需要密封保存 受熱或見光易分解的要密封保存嗎
1、易被空氣中的氧氣氧化的物質如白磷、鈉單質等,這些物質如果被氧化,就會發生變質,失去原有的性質,從而不能使用。
白磷和紅磷的區別是在於著火點和毒性,白磷著火點低於紅磷。白磷一般會在40℃左右燃燒,而紅磷要在240℃左右才能燃燒;白磷有劇毒,而紅磷幾乎無毒。
2、有毒的物質,例如氰化鉀。如果不密閉保存會產生有害物質,污染環境或者傷害人體健康。
3、易揮發的物質,例如酒精。此類物質揮發性強,密封有助於存儲,否則將會一段時間後減少或者完全沒有。
4、有核輻射的(需要特製的密封容器),危險物質需要密閉,並且特殊的容器,使其既不傷害外界自身也能保持一定性質。
5、分解後產生有毒氣體的等等都需要密封保存。
受熱或見光易分解的不一定都要密封保存,一般都要置於陰涼乾燥的環境中,最好使用棕色玻璃瓶保存。
(5)熱空氣存儲擴展閱讀:
葡萄糖(或糖原)在正常有氧的條件下 氧化後,產生二氧化碳和水這個總過程稱作糖的有氧氧化,又稱細胞氧化或生物氧化。整個過程分為三個階段:
①糖氧化成丙酮酸。葡萄糖進入細胞後經過一系列酶的催化反應,最後生成丙酮酸的過程,此過程在細胞質中進行 並且是不耗能的過程;
②丙酮酸進入線粒體, 在基質中脫羧生成乙醯;
③乙醯進入三羧酸循環, 徹底氧化。
物質失去電子的作用叫氧化;得到電子的作用叫還原。狹義的氧化指物質與氧化合;還原指物質失去氧的作用。氧化時氧化值升高;還原時氧化值降低。氧化、還原都指反應物(分子、離子或原子)。氧化也稱氧化作用或氧化反應。
有機物反應時把有機物引入氧或脫去氫的作用叫氧化;引入氫或失去氧的作用叫還原。物質與氧緩慢反應緩緩發熱而不發光的氧化叫緩慢氧化,如金屬銹蝕、生物呼吸等。劇烈的發光發熱的氧化叫燃燒。
一般物質與氧氣發生氧化時放熱,個別可能吸熱如氮氣與氧氣的反應。電化學中陽極發生氧化,陰極發生還原。
鐵在空氣中會生銹、銀器在空氣中會變黑,這是一種氧化作用。
⑥ 常見的風能存儲方式
將風能轉變為化學能,是又一種別開生面的儲存風能的方式。
空氣流具有的動能稱風能。空氣流速越高,動能越大。人們可以用風車把風的動能轉化為旋轉的動作去推動發電機,以產生電力,
方法是透過傳動軸,將轉子(由以空氣動力推動的扇葉組成)的旋轉動力傳送至發電機。到2008年為止,全世界以風力產生的電力約有 94.1 百萬千瓦,供應的電力已超過全世界用量的1%。風能雖然對大多數國家而言還不是主要的能源,但在1999年到2005年之間已經成長了四倍以上。
現代利用渦輪葉片將氣流的機械能轉為電能而成為發電機。在中古與古代則利用風車將收集到的機械能用來磨碎穀物和抽水。
風力被使用在大規模風農場和一些供電被被隔絕的地點,為當地的生活和發展做出了巨大的貢獻。
(6)熱空氣存儲擴展閱讀:
風能利用形式主要是將大氣運動時所具有的動能轉化為其他形式的能量。風就是水平運動的空氣,空氣產生運動,主要是由於地球上各緯度所接受的太陽輻射強度不同而形成的。
在赤道和低緯度地區,太陽高度角大,日照時間長,太陽輻射強度強,地面和大氣接受的熱量多、溫度較高;在高緯度地區太陽高度角小,日照時間短,地面和大氣接受的熱量小,溫度低。這種高緯度與低緯度之間的溫度差異,形成了中國南北之間的氣壓梯度,使空氣作水平運動。
⑦ 存儲氫氣的方式有哪些
氫能體系主要包括氫的生產、儲存和運輸、應用3個環節。而氫能的儲存是關鍵,也是目前氫能應用的主要技術障礙。大家知道,所有元素中氫的重量最輕,在標准狀態下,它的密度為0.0899克/升,為水的密度的萬分之一。在-252.7℃ 時,可以為液體,密度70克/升,僅為水的1/15。所以氫氣可以儲存,但是很難高密度儲存。
氫氣輸送也是氫能利用的重要環節。一般而言,氫氣生產廠和用戶會有一定的距離,這就存在氫氣輸送的需求。按照氫在輸運時所處狀態的不同,可以分為氣氫輸送、液氫輸送和固氫輸送。其中前兩者是目前正在大規模使用的兩種方式。
高壓氣態儲存
氣態氫可儲存在地下倉庫里,也可裝入鋼瓶中。為了提高其儲存空間利用率,必須將氫氣進行壓縮,盡可能使氫氣的體積變小,因此就需要對氫氣施加壓力,為此需消耗較多的壓縮功。氫氣重量很輕,即使體積縮小、密度增大,重量仍然如此。一般情況下,一個充氣壓力為20兆帕的高壓鋼瓶儲氫重量只佔總重量的1.6%,供太空用的鈦瓶儲氫重量也僅為總重量的5%。
為提高儲氫量,目前科技工作者們正在研究一種微孔結構的儲氫裝置,它是一種微型球床。微型球的球壁非常薄,最薄的只有1微米。微型球充滿了非常小的小孔,最小的小孔直徑只有10微米左右,氫氣就儲存在這些小孔中。微型球可用塑料、玻璃、陶瓷或金屬製造。
高壓氣態儲存是最普遍、最直接的方式,通過減壓閥的調節就可以直接將氫氣釋放出來。但是它也存在著一定的不足,即能耗較高。
低溫液化儲存
隨著溫度的變化,氫氣的形態也會發生變化。將氫氣降溫,當冷卻到-253℃時,氫氣就會發生形態上的變化,由氣態變成液態,也就是液氫。然後,再將液氫儲存在高真空的絕熱容器中,在恆定的低溫下,液氫就會一直保持這種狀態,不再發生變化。這種液氫儲存工藝已經用於宇航中。這種儲存方式成本較高,安全技術也比較復雜,不適合廣泛應用。低溫儲存液氫的關鍵就在於儲存容器,因此高度絕熱的儲氫容器是目前研究的重點。
現在一種間壁間充滿中孔微珠的絕熱容器已經問世。這種二氧化硅的微珠直徑在30~150微米,中間是空心的,壁厚只有1~5微米,在部分微珠上鍍上厚度為1微米的鋁。由於這種微珠導熱系數極小,其顆粒又非常細,可以完全抑制顆粒間的對流換熱;將3%~5%的鍍鋁微珠混入不鍍鋁的微珠當中,可以有效地切斷輻射傳熱。這種新型的熱絕緣容器不需抽真空,其絕熱效果遠優於普通高真空的絕熱容器,是一種比較理想的液氫儲存罐,美國宇航局已廣泛採用這種新型的儲氫容器。
在生產實踐中,採用液氫儲存必須先制備液氫,將氣態氫變成液態氫。生產液氫一般可採用3種液化循環方式,其中,帶膨脹機的循環效率最高,在大型氫液化裝置上被廣泛採用;節流循環方式效率不高,但流程簡單,運行可靠,所以在小型氫液化裝置中應用較多;氦製冷氫液化循環消除了高壓氫的危險,運轉安全可靠,但氦製冷系統設備復雜,因此在氫液化中應用不多。
金屬氫化物儲存
曾經有這樣一件奇怪的事情:在一間部隊的營房裡,史密斯中士把彎曲的鎳鈦合金絲拉直,放到工作台上,轉過身忙別的事情。過了一會兒,等他再回到檯子邊,看到剛才拉直的鎳鈦合金絲又變成原來彎曲的形狀了,史密斯中士對此感到很奇怪。
發現這種現象的不僅僅是史密斯中士,巴克勒教授也發現了這種現象。他發現被他拉直的鎳鈦合金絲又恢復到原來彎曲的形狀了。為什麼會這樣呢?巴克勒教授走到鎳鈦合金絲的旁邊,看到周圍並沒有什麼異常,他再試了一下看看是不是磁場作用的結果,可是經過檢測,周圍根本沒有磁場。這到底是什麼原因呢?當他無意中用手摸了摸放金屬的檯子,發現檯子很燙,難道是熱量在作怪嗎?巴克勒教授決定親自試一試。他把鎳鈦合金絲一根一根地拉直,然後又把它們放到檯子上,結果和剛才一樣。他又將這些鎳合金絲拉直放到另外一個地方,這些金屬並沒有彎曲,還保持原來的樣子。也就是說,放在高溫地方的鎳鈦合金絲會恢復到原來彎曲的樣子,而放在其他地方的鎳鈦合金絲沒有改變形狀。巴克勒教授從而發現了一個非常重要的科學現象,即合金在上升到一定溫度的時候,它會恢復到原來彎曲的狀態。巴克勒教授由此得到一個結論:鎳鈦合金具有記憶力。鎳鈦合金具有記憶力,那麼其他金屬有沒有記憶力呢?巴克勒教授並沒有淺嘗輒止,放過對其他事物研究的機會。他做了許多實驗,最後他發現合金大都具有記憶力。
根據合金的這一特性,近年來,一種新型簡便的儲氫方法應運而生,即利用儲氫合金(金屬氫化物)來儲存氫氣。這是一種金屬與氫反應生成金屬氫化物而將氫儲存和固定的技術。氫可以和許多金屬或合金化合之後形成金屬氫化物,它們在一定溫度和壓力下會大量吸收氫而生成金屬氫化物。而反應又有很好的可逆性,適當升高溫度和減小壓力即可發生逆反應,釋放出氫氣。金屬氫化物儲存,使氫氣跟能夠氫化的金屬或合金相化合,以固體金屬氫化物的形式儲存起來。金屬儲氫自20世紀70年代開始就受到了重視。
儲氫合金具有很強的儲氫能力。單位體積儲氫的密度,是相同溫度、壓力條件下氣態氫的1000倍,也就是說,相當於儲存了1000個大氣壓的高壓氫氣。儲氫合金都是固體,需要用氫時通過加熱或減壓將儲存於其中的氫釋放出來,因此是一種極其簡便易行的理想儲氫方法。目前研究發展中的儲氫合金主要有鈦系儲氫合金、鋯系儲氫合金、鐵系儲氫合金以及稀土系儲氫合金。
儲氫合金具有高強的本領,不僅具有儲存氫氣的功能,而且還能夠採暖和製冷。炎熱的夏天,太陽光照射在儲氫合金上,在陽光熱量的作用下,它便吸熱放出氫氣,將氫氣儲存在氫氣瓶里。吸熱使周圍空氣溫度降低,起到空調製冷的效果。到了寒冷的冬天,儲氫合金又吸收夏天所儲存的氫氣,放出熱量,這些熱量就可以供取暖了。利用這種放熱—吸熱循環可進行熱的儲存和傳輸,製造製冷或採暖設備。此外,儲氫合金還可以用於提純和回收氫氣,它可將氫氣提純到很高的純度。採用儲氫合金,可以以很低的成本獲得純度高於99.9999%的超純氫。
儲氫合金的飛速發展,給氫氣的利用開辟了一條廣闊的道路。目前我國已研製成功了一種氫能汽車,它使用儲氫材料90千克就可以連續行駛40千米,時速超過50千米。
碳材料儲存
碳材料儲氫也是一種重要的儲氫途徑。做儲氫介質的碳材料主要有高比表面積活性炭、石墨納米纖維和碳納米管。由於材料內孔徑的大小及分布不同,這三類碳材料的儲氫機理也有區別。活性炭儲氫的研究始於20世紀70年代末,該材料儲氫面臨最大的技術難點是氫氣需先預冷吸氫量才有明顯的增長,且由於活性炭孔徑分布較為雜亂,氫的解吸速度和可利用容積比例均受影響。碳納米材料是一種新型儲氫材料,如果選用合適催化劑,優化調整工藝過程參數,可使其結構更適宜氫的吸收和脫附,用它做氫動力系統的儲氫介質有很好的前景。
石墨納米纖維來自含碳化合物,由含碳化合物經所選金屬顆粒催化分解產生,主要形狀有管狀、飛魚骨狀、層狀。其中,飛魚骨狀的石墨納米纖維吸氫量最高。
碳納米管可以分為單壁碳納米管和多壁碳納米管,主要由碳通過電弧放電法和熱分解催化法製得。電弧放電法製得的碳納米管通常比較長,結晶性能比較好,但純化較困難。而用催化法製得的碳納米管,管徑大小比較容易調節,純化也比較容易,但結晶性能要比電弧放電法制備的差一些。
碳納米管的孔徑分布比石墨納米纖維的孔徑分布更為有序,選用合適的金屬催化顆粒和晶狀促長劑,就能夠比較容易地控制管徑的大小及管口的朝向。微孔中加入催化金屬顆粒和促長劑,可增加碳納米管強度,並使表面微孔更適宜氫分子的儲存。知識點
⑧ 在炎熱的夏天收集熱空氣,然後在寒冷的冬天釋放熱空氣,通過這種方法採暖,可能嗎
這個是個很不錯的想法 但是我想 如果實現起來 有可能不太容易 因為勢必會涉及到設備及技術 還有人力
⑨ 發明一個存儲熱量的,夏天存儲冬天釋放
沒有
倘若要做成這樣的機器
在拉動它儲存空氣中的熱量時所做的功絕對要大於它儲存的熱量(能量守衡定律第二定義——一種能不可能完全轉化為另一種形式的能而不產生其他影響)
這種得不償失的事沒人願意做的說
⑩ 風能是怎樣儲存起來的
發展和利用風能,如同發展和利用核能、太陽能、地熱能一樣,在世界范圍內已成為一個」熱門「領域。不過,風力的大小有著明顯的地區性和季節性。因此,如何把風能有效地儲存起來,讓它」細水長流「或者備以急用,是當前世界各國研究、利用風能的重要課題。儲存風能的方法主要有如下幾種:
氫氣儲能日本科學技術廳在世界上首先提出了將風能變成熱能,再用熱能去產生氫氣,然後加以儲存的研究計劃,並於80年代中期在秋田縣進行了實驗。科學家們設計了一套風能儲存裝置,它由風車、發熱裝置以及蓄熱裝置組成。
壓氣蓄能利用風力將空氣壓縮儲存起來,待需要時放出壓縮空氣推動燃氣輪機發電,這是儲存風能的一種有效辦法。它可以節約大量燃料,使發電成本降低,並能保證提供穩定的電能。
風力充電把電能轉變為化學能,又把化學能轉變為電能,這就是蓄電池的工作原理。將風能轉變為化學能,是又一種別開生面的儲存風能的方式。